1、关系关系华东师大版九年级下册华东师大版九年级下册(2)(2)直线直线与与圆圆只有一个只有一个公共点公共点, , 叫做直线与圆叫做直线与圆相切相切, , 这条直线叫这条直线叫圆的切线,圆的切线, 这个公共点叫这个公共点叫切点。切点。(3)(3)直线与圆有直线与圆有两个两个公共点公共点, , 叫做直线与圆叫做直线与圆相交,相交, 这条直线叫这条直线叫圆的割线。圆的割线。 (1)(1)直线与圆直线与圆没有没有公共点时公共点时, , 叫做直线与圆叫做直线与圆相离。相离。有两个公共点有两个公共点只有一个只有一个公共点公共点没有公没有公共点共点drdrdr点在圆内点在圆内rOP P点在圆上点在圆上rOP
2、P点在圆外点在圆外rOP P(2 2)直线)直线l l 与与OO相切相切类似的,是否可以用数量关系来判断直线与圆的位类似的,是否可以用数量关系来判断直线与圆的位置关系?置关系?( (探索发现)如果探索发现)如果OO半径为半径为r r,圆心,圆心OO到到直线的距离为直线的距离为d d,则有:则有:(1 1)直线)直线l l 与与OO相离相离(3 3)直线)直线l l 与与OO相交相交drdrd=rd=rdrdr,dr,因此因此C C与与ABAB相离。相离。D D(2 2)当)当r=4.8r=4.8时时, , 有有d=r,d=r,因此,因此,CC与与ABAB相切。相切。(3 3)当)当r=5r=5
3、时,时,有有drdr,因此,因此,CC与与ABAB相交。相交。A AC CB B8 86 6D DA AC CB B8 86 6D D A AC CB B8 86 6D D小游戏(小组小游戏(小组pkpk):):根据例题中根据例题中r r取不同值来取不同值来出题(一小组长出题,另一小组每位同学各出题(一小组长出题,另一小组每位同学各回答一个问题)回答一个问题) d=4.8d=4.8问题:问题:r=8r=8时,直线与圆时,直线与圆有几个公共点?有几个公共点?回答:回答:有两个公共点有两个公共点例:例:课堂练习:A A组:组:1 1、已知、已知OO的半径为的半径为3 3,圆心,圆心OO到直线到直线
4、L L的距离的距离为为2 2,则直线,则直线L L与与OO的位置关系是()的位置关系是() A A相交相交 B B相切相切CC相离相离 D D不能确定不能确定2 2、直线与圆有、直线与圆有2 2个公共点,则直线与圆个公共点,则直线与圆 ; 直线与圆有直线与圆有1 1个公共点,则直线与圆个公共点,则直线与圆 ; 直线与圆没有公共点,则直线与圆直线与圆没有公共点,则直线与圆 。 A A相离相离相切相切相交相交B B组:组:1 1如图,已知如图,已知APB=30APB=30,OP=3cmOP=3cm,OO的半径为的半径为1cm1cm,若圆心,若圆心OO沿着沿着BPBP的方的方向在直线向在直线BPBP
5、上移动上移动()当圆心)当圆心OO移动的距离为移动的距离为1cm1cm时,则时,则OO与直线与直线PAPA的位置关系是的位置关系是()若圆心)若圆心OO的移动距离是的移动距离是d d,当,当OO与直与直线线PAPA相交时,则相交时,则d d的取值范围是的取值范围是O与直线PA相切;O的半径是11OP21CO30APBPA于CCO作213OOPOOP时,当点O向左移动1cm解:(1)如图, O O O C CO P PA AB B(2 2)如图:当点)如图:当点OO由由OO向右向右继续移动时,继续移动时,PAPA与圆相交,与圆相交,当移动到当移动到OO时,相切,时,相切,此时此时OP=PO=2O
6、P=PO=2, OO=2+3=5OO=2+3=5点点OO移动的距离移动的距离d d的范围满足的范围满足1cm1cmd d5cm5cm时相交,时相交,故答案为:故答案为:1cm1cmd d5cm5cm直线与圆的位置直线与圆的位置关系关系公共点个数公共点个数公共点名称公共点名称直线名称直线名称数量关系数量关系 dr d rd r 割线割线 切线切线 交点交点 切点切点 2 21 10 0小结:小结:直线和圆的三种位置关系直线和圆的三种位置关系相离相离相切相切相交相交【课后作业】 书本P50 1-3 , P55第5题,预习下节课内容作业补充:作业补充: A A组组1 1已知已知OO的半径为的半径为3
7、 3,圆心,圆心OO到直线到直线L L的距离的距离为为2 2,则直线,则直线L L与与OO的位置关系是的位置关系是 . .2 2若若OO的半径为的半径为4 4,直线,直线l l与与OO相切,则圆相切,则圆心心OO到直线到直线l l的距离为的距离为 . .B B组组. .3 3以点以点P P(1 1,2 2)为圆心,)为圆心,r r为半径画圆,与坐标轴恰好为半径画圆,与坐标轴恰好有三个交点,则有三个交点,则r r应满足()应满足()A Ar=2r=2或或 B Br=2 Cr=2 Cr=r= D D2r2r4 4已知已知OO的半径是一元二次方程的半径是一元二次方程 的解,且点的解,且点OO到直线到直线ABAB的距离为的距离为2 2,则,则OO与直线与直线ABAB的位置关系为的位置关系为 . .0962 xx谢谢!谢谢!