小题简写-2022.3.31福建高三质检-解析.doc

上传人(卖家):四川天地人教育 文档编号:2378806 上传时间:2022-04-09 格式:DOC 页数:12 大小:611KB
下载 相关 举报
小题简写-2022.3.31福建高三质检-解析.doc_第1页
第1页 / 共12页
小题简写-2022.3.31福建高三质检-解析.doc_第2页
第2页 / 共12页
小题简写-2022.3.31福建高三质检-解析.doc_第3页
第3页 / 共12页
小题简写-2022.3.31福建高三质检-解析.doc_第4页
第4页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2022.3.31福建高三质检一:单选题:本大题共 8 小题,每小题 5 分,共 40 分1. 设集合 A = x Z x2 - x - 2 0 ,B = 0,1,2,3 , 则 A B = ( B )A. 0,1 B. 0,1,2 C. -1,0,1,2,3 D. -2,-1,0,1,2,3【解 析】集合 A = x|-1 x 2 , A B = 0,1,22. x - 25的展开式中的常数项为 ( B ) 3 xA. - 160 B. - 80 C. 80 D. 1603 , 由 5 - k5-k k【解 析】Tk+1 = C5k-2 kx 2 -2 -k3 = 0 得 ,k = 3,-2

2、 3C53 = -803. 设复数 z1,z2,z3 满足 z3 0, 且 z1 = z2, 则 ( D )A. z1 = z2 B. z12 = z22 C. z1 z3 = z2 z3 D. z1 z3 = z2 z3【解 析】不妨取 z1 = 1 + 2i,z2 = 2 + i,验证可知 D 正确4. 若 a 0,b 0, 则“a + b 2”的一个必要不充分条件是 ( B )A. 1a +1b 1 B. ab 1 C. a2 + b2 2 D. a 2 - b【解 析】对于 A,取 a = 1;对于 B,ab ( a + b 2 1, 故 B 是必要条件,但是 a = 3,b = 12

3、 )5对于选项 C,取 a = 2,b = 0.1时 ,ab 1 成立,a + b 400,选 D第 1 页共 11 页6. 已知抛物线 C : y2 = 2px(p 0) 的焦点为 F, 过 F 且倾斜角为 3的纵坐标为 3, 则 |AB| = ( C )的直线交 C 于 A,B 两点 , 线段 AB 中点A. 83 B. 4 C. 8 D. 24【解 析】联立y2 = 2px 得 1 2 - 3 y = 3 x - p 2p y 3 y - 2p1 + y2 = 2 32 = 0, y 3 p = 2 3, p = 3 由 y1 + y2 = 3x1 + x2 - 3p 得 ,x1 + x

4、2 = 5 AB = x1 + x2 + p = 87. 关于函数 f(x) = Asin(2x + ) , 有下列四个命题 :甲 : f(x) 在 5, 27 单调递增;5乙 : - 是 f(x) 的一个极小值点;6丙 : 是 f(x) 的一个极大值点;3丁 : 函数 y = f(x) 的图象向左平移 3个单位后所得图象关于 y 轴对称.其中只有一个是假命题 , 则该命题是 ( )A. 甲 B. Z C. 丙 D. 丁【解 析】T = ,甲最后分析,假定乙正确,取 fx = A 2x - sin 6验证丙:x = 时,2x - 6 =,符 合3 2验证丁:f x + sin = Acos2x

5、, 符合 = A 2x + 3 2故甲是假命题8. 已知 f(x) 是定义在 R 上的函数 , 且函数 y = f(x + 1) - 1 是奇函数 , 当 x 0,且单调递减,有最大项 b1 - c1;当 n 为偶数时,bn - cn 0 时,为双曲线,当 y 0.【解 析】函数单调递增,无最大值,无限接近于 1,定义域为 R,类似递减的指数函数图像关于 x 轴对称情况 可取 fx = 1 - 1ax,a 1 均可;例如 fx = 1 - 13x第 5 页共 11 页16.缀术是中国南北朝时期的一部算经 , 汇集了祖冲之和祖暅父子的数学研究成果 .缀术中提出的“缘幂势既同 , 则积不容异”被称

6、为祖暅原理 , 其意思是:如果两等高的几何体在同高处被截得的两截面面积均相等 , 那么这两个几何体的体积相等 . 该原理常应用于计算某些几何体的体积 . 如图 , 某个西晋越窑卧足杯的上下底为互相平行的圆面 , 侧面为球面的一部分 , 上底直径为 4 6cm, 下底直径为 6cm, 上下底面间的距离为 3cm, 则该卧足杯侧面所在的球面的半径是 cm; 卧足杯的容积是 cm3( 杯的厚度忽略不计 ).【解 析】1 求半径:如图, R2 - 32 - R2 - 2 6 2 = 3 或 R2 - 32 + R2 - 2 6 2 = 3;解得 R = 5,为左图的情况OA BOA BC D C D2 祖暅原理的使用,如左图,由 1 可知 OM = 1,ON = 4,MN = 3卧足杯中每一个水平截面面积为 R2 - OH2 , 其中 OH 1,4 右图:圆柱 ABCD 高为 3,底面半径为 5, 其中 OL = LQ = 5, HK = OH同一高度圆柱、圆锥的截面积差为 R2 - OH2, 与卧足杯截面面积相等故卧足杯体积 = 圆柱 ABCD 的体积减去圆台 MN 的体积 = * 52 * 3 - 1 V卧足杯 = V圆柱 - V圆锥ON - V圆锥OM31 2 * 4 - 12 * 1 = 543 * 4MOOMA BrKH HNC D NP QL第 6 页共 11 页

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(小题简写-2022.3.31福建高三质检-解析.doc)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|