1、1导入新课讲授新课当堂练习课堂小结第1课时 直角三角形的性质和判定1.1 直角三角形的性质和判定()第1章 直角三角形 八年级数学下(XJ) 教学课件1.了解直角三角形两个锐角的关系.(重点)学习目标2.掌握直角三角形的判定及推论.(难点)3.会运用直角三角形的性质和判定进行相关计算.(难点)导入新课导入新课 在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了”“为什么?” 老二很纳闷.你知道其中的道理吗?内角三兄弟之争情境引
2、入 老大的度数为90,老二若是比老大的度数大,那么老二的度数要大于90,而三角形的内角和为180,相互矛盾,因而是不可能的.在这个家里,我是永远的老大.问题1:如下图所示是我们常用的三角板,两锐角的度数之和为多少度?30+60=9045+45=90讲授新课讲授新课直角三角形的两个锐角互余一问题引导问题2:如图,在RtABC中, C=90,两锐角的和等于多少呢? 在RtABC中,因为 C=90,由三角形内角和定理,得A +B+C=90,即A +B=90.思考:由此,你可以得到直角三角形有什么性质呢?ABC直角三角形的两个锐角互余u应用格式:在RtABC 中,C =90,A +B =90直角三角形
3、的表示:直角三角形可以用符号“Rt”表示,直角三角形ABC 可以写成RtABC 总结归纳方法一(利用平行的判定和性质):B=C=90,ABCD,A=D.方法二(利用直角三角形的性质):B=C=90,A+AOB=90,D+COD=90.AOB=COD,A=D.例1(1)如图,B=C=90,AD交BC于点O,A 与D有什么关系?图典例精析解:A=C.理由如下:B=D=90,A+AOB=90,C+COD=90.AOB=COD,A=C.(2)如图,B=D=90,AD交BC于点O,A与 C有什么关系?请说明理由.图与图有哪些共同点与不同点?例2 如图, C=D=90 ,AD,BC相交于点E. CAE与D
4、BE有什么关系?为什么?ABCDE解:在RtACE中, CAE=90 - AEC. 在RtBDE中, DBE=90 - BED. AEC= BED, CAE= DBE.解:CDAB于点D,BEAC于点E, BEA=BDF=90, ABE+A=90, ABE+DFB=90. A=DFB. DFB+BFC=180, A+BFC=180.【变式题】如图,ABC中,CDAB于D,BEAC于E,CD,BE相交于点F,A与BFC又有什么关系?为什么?思考:通过前面的例题,你能画出这些题型的基本 图形吗?基本图形A=CA=D总结归纳问题:有两个角互余的三角形是直角三角形吗? 如图,在ABC中, A +B=9
5、0 , 那么ABC是直角三角形吗? 在在ABC中,因为中,因为 A +B +C=180, 又又A +B=90,所以,所以C=90. 于是于是ABC是直角三角形是直角三角形.有两个角互余的三角形是直角三角形二ABC应用格式:在ABC 中,中,A +B =90,ABC 是直角三角形有两个角互余的三角形是直角三角形.总结归纳典例精析例3 如图,C=90 , 1= 2,ADE是直角三 角形吗?为什么?ACBDE(12解:在RtABC中, 2+ A=90 . 1= 2, 1 + A=90 .即ADE是直角三角形.例4 如图,CEAD,垂足为E,A=C,ABD是 直角三角形吗?为什么?解:ABD是直角三角
6、形.理由如下:CEAD,CED=90,C+D=90,A=C,A+D=90,ABD是直角三角形. 问题: 如图,画一个RtABC, 并作出斜边AB上的中线CD,比较线段CD 与线段AB 之间的数量关系,你能得出什么结论?直角三角形斜边上的中线等于斜边的一半三我测量后发现CD = AB.12线段CD 比线段AB短.猜想:直角三角形斜边上的中线等于斜边的一半.试给出数学证明.图1-4 如图1-3, 如果中线CD = AB,则有DCA = A . 由此受到启发,在图1-4 的RtABC中,过直角顶点C作射线 交AB于 ,使 ,12CD =ADD = AD CA则 .CD图1-3证一证 点D是斜边上的中
7、点,即CD 是斜边AB的中线.A +B=90 ,又 90D CA+D CB,BD CB. CD =BD .故得12CD =AD =BD = AB.从而CD与CD 重合,且CDAB.12 直角三角形斜边上的中线等于斜边的一半.性质性质例5 已知:如图,CD是ABC的AB边上的中线,且 . 求证:ABC是直角三角形.12CDAB 证明:12CDAB=BD=AD, 1=A,2=B .A+B+ACB =180,即A+B+1+2=180, 2(A+B)=180. A+B =90. ABC是直角三角形.例6 如图,在ABC中,AD是高,E、F分别是AB、AC的中点(1)若AB10,AC8,求四边形AEDF
8、的周长;解:AD是ABC的高,E、F分别是AB、AC的中点,DEAE AB 105, DFAF AC 84,四边形AEDF的周长AEDEDFAF 554418;12121212(2)求证:EF垂直平分AD.证明:DEAE,DFAF,E、F在线段AD的垂直平分线上, EF垂直平分AD. 当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解归纳如图,在ABC中,ABC = 90,BD是斜边AC上的中线.(1)若BD=3cm,则AC =_cm;(2)若C = 30 ,AB = 5cm,则AC =_cm, BD = _cm.ABCD6105练一练归纳总结体现直角三角
9、形斜边上中线的性质的常见图形1.如图,一张长方形纸片,剪去一部分后得到一个三角形,则图中1+2的度数是_.902.如图,AB、CD相交于点O,ACCD于点C, 若BOD=38,则A=_.52第1题图第2题图当堂练习当堂练习3.在ABC中,若A=43,B=47,则这个三角形是_.直角三角形4.在一个直角三角形中,有一个锐角等于40,则另 一个锐角的度数是() A40 B50 C60 D70 B5.具备下列条件的ABC中,不是直角三角形的是 ( )AA+B=C BA-B=C CA:B:C=1:2:3 DA=B=3C D6.如图所示,ABC为直角三角形,ACB=90, CDAB,与1互余的角有()A
10、B BA CBCD和A DBCD C7.如图,在直角三角形ABC中,ACB=90,D是AB上一点,且ACD=B求证:ACD是直角三角形证明:ACB=90,A+B=90,ACD=B,A+ACD=90,ACD是直角三角形.8. 如图,已知BD,CE是ABC不同边上的高,点G,F分别是BC,DE的中点,试说明GFDE.解:连接EG,DG. BD,CE是ABC的高, BDCBEC90. 点G是BC的中点,EG BC,DG BC. EGDG. 又点F是DE的中点, GFDE.1212 在直角三角形中,遇到斜边中点常作斜边中线,进而可将问题转化为等腰三角形的问题,然后利用等腰三角形“三线合一”的性质解题归
11、纳课堂小结课堂小结直角三角形的性质与 判 定性质直角三角形的两个锐角互余判定有两个角互余的三角形是直角三角形直角三角形斜边上的中线等于斜边的一半.导入新课讲授新课当堂练习课堂小结第2课时 含30角的直角三角形的性质及其应用1.1 直角三角形的性质和判定()第1章 直角三角形 八年级数学下(XJ) 教学课件1.理解和掌握有关30角的直角三角形的性质和应用;(重点)2.通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力(难点)学习目标导入新课导入新课问题引入问题1 如图,将两个含含30角的三角尺摆放在一起,你能借助这个图形,找到RtABC的直角边BC与斜边AB
12、之间的数量关系吗?分离拼接ABCDAC问题2 将剪一张等边三角形纸片,沿一边上的高对折,如图所示,你有什么发现?动手:用刻度尺测量含30角的直角三角形的斜边和短直角边,比较它们之间的数量关系.结论:短直角边=斜边21讲授新课讲授新课含30角的直角三角形的性质活动探究ABCD如图,ADC是ABC的轴对称图形,因此AB=AD, BAD=230=60,从而ABD是一个等边三角形.再由ACBD,可得BC=CD= AB.12合作探究证明:取线段AB的中点D,连接CD.CD为RtABC斜边AB上的中线,3030B BC CA AD D12CDAB=BD BCA =90,且A=30,B=60,CBD为等边三
13、角形,BC12=BDAB. 证法1证明方法:中线法证法2证明:在ABC 中,C =90,A =30, B =60延长BC 到D,使BD =AB,连接AD,则ABD 是等边三角形ABCD 证明方法:倍长法BC = AB123030)EABC 证明: 在BA上截取BE=BC,连接EC. B= 60 ,BE=BC. BCE是等边三角形, BEC= 60,BE=EC. A= 30, ECA=BEC-A=60-30 = 30. AE=EC, AE=BE=BC, AB=AE+BE=2BC.BC = AB12证明方法:截半法证法330)知识要点含30角的直角三角形的性质 在直角三角形中,如果一直角等于30,
14、那么这个直角所对的边等于斜边的一半.u应用格式:在RtABC 中,C =90,A =30,ABCBC = AB12)30(1)直角三角形中30角所对的直角边等于另一直角边的 一半(2)三角形中30角所对的边等于最长边的一半.(3)直角三角形中最小的直角边是斜边的一半.(4)直角三角形的斜边是30角所对直角边的2倍 判一判例1 如图,在RtABC中,ACB90,B30,CD是斜边AB上的高,AD3cm,则AB的长度是()A3cm B6cm C9cm D12cm典例精析注意:运用含30角的直角三角形的性质求线段长时,要分清线段所在的直角三角形 D解析:在RtABC中,CD是斜边AB上的高,ADC9
15、0,ACDB30.在RtACD中,AC2AD6cm,在RtABC中,AB2AC12cm.AB的长度是12cm.例2 已知:等腰三角形的底角为15 ,腰长为20.求腰上的高. ACBD15 15 20解:过C作CDBA交BA的延长线于点D.B=ACB=15 (已知),DAC= B+ ACB= 15+15=30,)1212CD= AC= 20=10.方法总结:在求三角形边长的一些问题中,可以构造含30角的直角三角形来解决例3:在A岛周围20海里(1海里=1852m)水域内有暗礁,一轮船由西向东航行到O处时,发现A岛在北偏东60的方向上,且与轮船相距 海里,如图所示.该船如果保持航行不变,有触暗礁的
16、危险吗?30 3O OB BD DA A北北东东606030 3解:AOD=30, AO= 海里,AD= AO= 海里20海里,所以无危险.30 31215 3解:如图,取线段AB的中点D,连接CD.CD是RtABC斜边AB上的中线,CD= AB=BD=AD,即BDC为等边三角形,B=60.B+A=90,A=30.思考:如图,在RtABC中,如果BC= AB,那么A等于多少?12BCAD12知识要点 在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30.u应用格式:在RtABC 中,C =90,ABCBC = AB12)30A =30例4:如图所示,在四边形ACBD中,
17、ADBC,ABAC,且AC BC,求DAC的度数12解:ABAC,CAB90.AC BC,CBA30.ADBC,BAD30,CADCABBAD120.12当堂练习当堂练习1.如图,一棵树在一次强台风中,于离地面3米处折断倒下,倒下部分与地面成30角,这棵树在折断前的高度为( )A6米 B9米 C12米 D15米B2.某市在旧城改造中,计划在一块如图所示的ABC空地上种植草皮以美化环境,已知A150,这种草皮每平方米售价a元,则购买这种草皮至少需要( )A300a元 B150a元C450a元 D225a元B3.如图,在ABC 中,ACB =90,CD 是高,A =30,AB =4则BD = .
18、A B C D 14.在ABC中,A: B: C=1:2:3,若AB=10,则BC = .55.如图,RtABC中,A= 30,AB+BC=12cm,则AB=_.ACB8cm第5题图6.在ABC中,C=90,B=15,DE是AB的垂直平分线,BE=5,求AC的长解:连接AE,DE是AB的垂直平分线,BE=AE,B=EAB=15,AEC=30,C=90,AC= AE= BE=2.512127.在 ABC中, AB=AC,BAC=120,D是BC的中点,DEAB于E点,求证:BE=3EA.证明:AB=AC,BAC=120, B=C=30. D是BC的中点,ADBCADC=90, BAD=DAC=6
19、0.AB=2AD.DEAB,AED=90,ADE=30,AD=2AE.AB=4AE,BE=3AE.ABCDE解:DEAC,BC AC, A=30 ,BC= AB, DE= AD.1212BC= AB= 7.4=3.7(m).1212又AD= AB,12DE= AD= 3.7=1.85 (m).1212答:立柱BC的长是3.7m,DE的长是1.85m.8.如图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC,DE 垂直于横梁AC,AB =7.4 cm,A =30,立柱BC、DE 有多长.9.如图,已知ABC是等边三角形,D,E分别为BC、AC上的点,且CD=AE,AD、BE相交于点P,B
20、QAD于点Q, 求证:BP=2PQ.拓展提升ADCBEA.证明:ABC为等边三角形, AC=BC=AB ,C=BAC=60,CD=AE,CAD=ABE,BAP+CAD=60.ABE+BAP=60.BPQ=60.又 BQAD,BP=2PQ.PBQ=30,BQP=90,课堂小结课堂小结内 容在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半(反之亦成立)使 用要 点含30角的直角三角形的性质找准30 的角所对的直角边,点明斜边注 意前提条件:直角三角形中1.2 直角三角形的性质和判定()第1章 直角三角形导入新课讲授新课当堂练习课堂小结第1课时 勾股定理 八年级数学下(XJ)
21、教学课件学习目标1.经历勾股定理的探究过程,了解关于勾股定理的一 些文化历史背景,会用面积法来证明勾股定理,体 会数形结合的思想.(重点)2.会用勾股定理进行简单的计算 .(难点) 其他星球上是否存在着“人”呢?为了探寻这一点,世界上许多科学家向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等.导入新课导入新课情景引入据说我国著名的数学家华罗庚曾建议“发射”一种勾股定理的图形(如图).很多学者认为如果宇宙“人”也拥有文明的话,那么他们一定会认识这种语言,因为几乎所有具有古代文化的民族和国家都对勾股定理有所了解.勾股定理有着悠久的历史:古巴比伦人和古代中国人看出了这个关系,古希腊的毕达哥
22、拉斯学派首先证明了这关系,下面让我们一起来通过视频了解吧:讲授新课讲授新课勾股定理的认识及验证一 我们一起穿越回到2500年前,跟随毕达哥拉斯再去他那位老朋友家做客,看到他朋友家用等腰直角三角形砖铺成的地面(如图):ABC问题1 试问正方形A、B、C面积之间有什么样的数量关系?ABCSSS正方形正方形正方形ABC一直角边2另一直角边2斜边2+= 问题2 图中正方形A、B、C所围成的等腰直角三角形三边之间有什么特殊关系?问题3在网格中有一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?观察下边两幅图(每个小正方形的面积为单位1):这两幅图中A,B的面积都好求,该怎
23、样求C的面积呢?方法1:补形法(把以斜边为边长的正方形补成各边都在网格线上的正方形): C15 5423132S C177443252S左图:右图:方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形): C14231 1132S C14431 1252S 左图:右图:你还有其他办法求C的面积吗?根据前面求出的C的面积直接填出下表: A的面积B的面积C的面积左图右图4 1325916 9ABCSSS正方形正方形正方形问题4 正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?一直角边2另一直角边2斜边2+=直角三角形两直角边a,b的平方和,等于斜边c的平方.a2+
24、b2=c2. 由上面的几个例子,我们猜想:abc下面动图形象的说明命题1的正确性,让我们跟着以前的数学家们用拼图法来证明这一猜想.abbc cabca证法1 让我们跟着我国汉代数学家赵爽,用他所拼的图形证明命题吧.abcS大正方形c2,S小正方形(b-a)2,S大正方形4S三角形S小正方形,赵爽弦图b-a证明: “赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,它是我国古代数学的骄傲.因此,这个图案被选为2002年在北京召开的国际数学大会的会徽.222214.2cabbaab证法2 毕达哥拉斯证法,请先用手中四个全等的直角三角形按图示方法拼图,然后分析其面积关系进行证明.aaaabbbbc
25、ccca2+b2+2ab=c2+2ab,a2 +b2 =c2.证明:S大正方形=(a+b)2=a2+b2+2ab,S大正方形=4S直角三角形+ S小正方形 =4 ab+c2 =c2+2ab,12aabbcc1()(),2Sabab梯形证明:2111,222Sababc梯形a2 + b2 = c2.证法3 美国第二十任总统伽菲尔德的“总统证法”.如图,图中的三个三角形都是直角三角形,求证:a2 + b2 = c2. abc青入青方青出青出青入青入朱入朱方朱出青朱出入图课外链接 如图,过 A 点画一直线 AL 使其垂直于 DE, 并交 DE 于 L,交 BC 于 M.通过证明BCFBDA,利用三角
26、形面积与长方形面积的关系,得到正方形ABFG与矩形BDLM等积,同理正方形ACKH与矩形MLEC也等积,于是推得222.ABACBC 欧几里得证明勾股定理推荐书目a、b、c为正数直角三角形两直角边a,b的平方和,等于斜边c的平方. a2+b2=c2.u公式变形:222222-,acbbcacab,u勾股定理abc归纳总结在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”.我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.勾股勾2+股2=弦2小贴士 例1 如图,在RtABC中, C=90. (1)若a=b=5,求c; (2)若a=1,
27、c=2,求b.解:(1)据勾股定理得222255505 2;cab(2)据勾股定理得2222213.bca 利用勾股定理进行计算二CAB(1)若a:b=1:2 ,c=5,求a;(2)若b=15,A=30,求a,c. 【变式题1】在RtABC中, C=90.解: (1)设a=x,b=2x,根据勾股定理建立方程得x2+(2x)2=52, 解得5x ,5 .a(2)30 ,15,Ab2.ca因此设a=x,c=2x,根据勾股定理建立方程得(2x)2-x2=152,解得5 3 .x 5 310 3 .ac, 已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.
28、归纳【变式题2】 在RtABC中,AB4,AC3,求BC的长.解:本题斜边不确定,需分类讨论:当AB为斜边时,如图,当BC为斜边时,如图,43ACB43CAB22437;BC 22435.BC 图图 当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易丢解.归纳例2 已知ACB=90,CDAB,AC=3,BC=4.求CD的长.解:由勾股定理可得 AB2=AC2+BC2=25, 即 AB=5. 根据三角形面积公式, ACBC= ABCD. CD= .ADBC341212125 由直角三角形的面积求法可知直角三角形两直角
29、边的积等于斜边与斜边上高的积,它常与勾股定理联合使用归纳练一练 求下列图中未知数x、y的值:解:由勾股定理可得 81+ 144=x2, 解得x=15.解:由勾股定理可得 y2+ 144=169,解得 y=5.当堂练习当堂练习1.下列说法中,正确的是 ( )A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在RtABC中,C=90,所以a2+b2=c2D.在RtABC中,B=90,所以a2+b2=c2C2.图中阴影部分是一个正方形,则此正方形的面积为 .8 cm10 cm36 cm3.在ABC中,C=90.(1)若a=15,b=8,则c= .
30、(2)若c=13,b=12,则a= .1754.求斜边长17 cm、一条直角边长15 cm的直角三角形的面积.解:设另一条直角边长是x cm. 由勾股定理得152+ x2 =172, 即x2=172-152=289225=64,所以 x=8(负值舍去),所以另一直角边长为8 cm,直角三角形的面积是 (cm2).5.如图,在ABC中,ADBC,B=45,C=30,AD=1,求ABC的周长解:ADBC,ADB=ADC=90在RtADB中,B+BAD=90,B=45,B=BAD=45,BD=AD=1,AB= 在RtADC中,C=30,AC=2AD=2,CD= ,BC=BD+CD=1+ ,AB+AC
31、+BC= 233332解:因为AEBE,所以SABE AEBE AE2.又因为AE2BE2AB2,所以2AE2AB2,所以SABE AB2;同理可得SAHCSBCF AC2 BC2.又因为AC2BC2AB2,所以阴影部分的面积为 AB2 .6.如图,以RtABC的三边长为斜边分别向外作等腰直角三角形若斜边AB3,求ABE及阴影部分的面积.12121414141292能力提升:S1S2S3S4S5S6S7S5=S1+S2=4,S7=S5+S6=10.7.已知S1=1,S2=3,S3=2,S4=4,求S5,S6,S7的值.S6=S3+S4=6,课堂小结课堂小结勾股定理内容在RtABC中, C=90
32、,a,b为直角边,c为斜边,则有a2+b2=c2.注意在直角三角形中看清哪个角是直角已知两边没有指明是直角边还是斜边时一定要分类讨论1.2 直角三角形的性质和判定()第1章 直角三角形导入新课讲授新课当堂练习课堂小结第2课时 勾股定理的实际应用 八年级数学下(XJ) 教学课件学习目标1. 会运用勾股定理求线段长及解决简单的实际问题. (重点)2.能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联 系,并进一步求出未知边长.(难点) 情景引入数学来源于生活,勾股定理的应用在生活中无处不在,观看下面视频,你们能理解曾小贤和胡一菲的做法吗?导入新课导入新课问题 观
33、看下面同一根长竹竿以三种不同的方式进门的情况,并结合曾小贤和胡一菲的做法,对于长竹竿进门之类的问题你有什么启发?这个跟我们学的勾股定理有关,将实际问题转化为数学问题勾股定理的简单实际应用一讲授新课讲授新课例1 一个门框的尺寸如图所示,一块长3m,宽2.2m的长方形薄木板能否从门框内通过?为什么?2m1mABDC典例精析解:在RtABC中,根据勾股定理,AC2=AB2+BC2=12+22=5 52.24.AC 因为AC大于木板的宽2.2m,所以木板能从门框内通过. 分析:可以看出木板横着,竖着都不能通过,只能斜着.门框AC的长度是斜着能通过的最大长度,只要AC的长大于木板的宽就能通过.ABDCO
34、 解:在RtABO中,根据勾股定理得OB2=AB2-OA2=2.62-2.42=1, OB=1.在RtCOD中,根据勾股定理得OD2=CD2-OC2=2.62-(2.4-0.5)2=3.15,3.151.77,OD1.7710.77.BDODOB 所以梯子的顶端沿墙下滑0.5m时,梯子底端并不是也外移0.5m,而是外移约0.77m. 例2 如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m. 如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?例3:我国古代数学著作九章算术中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,
35、在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?D DA AB BC C解:设水池的水深AC为x尺,则这根芦苇长AD=AB=(x+1)尺,在直角三角形ABC中,BC=5尺由勾股定理得,BC2+AC2=AB2即 52+ x2= (x+1)225+ x2= x2+2x+1,2 x=24, x=12, x+1=13.答:水池的水深12尺,这根芦苇长13尺.例4 在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗? 8 米6米 8
36、米米6米米ACB解:根据题意可以构建一直角三角形模型,如图.在RtABC中,AC=6米,BC=8米,由勾股定理得22226810.ABACBC米这棵树在折断之前的高度是10+6=16(米).利用勾股定理解决实际问题的一般步骤:(1)读懂题意,分析已知、未知间的关系;(2)构造直角三角形;(3)利用勾股定理等列方程;(4)解决实际问题.归纳总结数学问题直角三角形勾股定理实际问题转化构建利用解决1.湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为 ( )ABCA.50米 B.120米 C.100米 D.130米130120?A练一练2.如图,学
37、校教学楼前有一块长方形草坪,草坪长为4米,宽为3米,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“径路”,却踩伤了花草.(1)求这条“径路”的长;(2)他们仅仅少走了几步(假设2步为1米)?解:(1)在Rt ABC中,根据勾股定理得这条“径路”的长为5米.(2)他们仅仅少走了 (3+4-5)2=4(步).别踩我,我怕疼!22345AB 米 ,A BCCBA问题 在A点的小狗,为了尽快吃到B点的香肠,它选择A B 路线,而不选择A C B路线,难道小狗也懂数学?AC+CB AB(两点之间线段最短)思考 在立体图形中,怎么寻找最短线路呢?利用勾股定理求最短距离二BAdABAABBAO想一想
38、:蚂蚁走哪一条路线最近?A 蚂蚁AB的路线问题:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,蚂蚁怎么走最近?BA根据两点之间线段最短易知第四个路线最近. 若已知圆柱体高为12 cm,底面半径为3 cm,取3.BA3O12侧面展开图 123ABAA 解:在RtABA中,由勾股定理得2222123 315.ABAABA 立体图形中求两点间的最短距离,一般把立体图形展开成平面图形,连接两点,根据两点之间线段最短确定最短路线.归纳例5 有一个圆柱形油罐,要以A点环绕油罐建梯子,正好建在A点的正上方点B处,问梯子最短需多少米(已知油
39、罐的底面半径是2 米,高AB是5 米,取3)?ABABAB解:油罐的展开图如右图,则AB为梯子的最短距离. AA=232=12, AB=5,AB=13. 即梯子最短需13米.数学思想:立体图形平面图形转化展开B牛奶盒牛奶盒A【变式题】看到小蚂蚁终于喝到饮料的兴奋劲儿,小明灵光乍现,拿出了牛奶盒,把小蚂蚁放在点A处,并在点B处放了点儿火腿肠粒,你能帮小蚂蚁找出吃到火腿肠粒的最短路程么?6cm8cm10cmBB18AB2610B3AB12 =102 +(6+8)2 =296,AB22= 82 +(10+6)2 =320,AB32= 62 +(10+8)2 =360,解:由题意知有三种展开方法,如图
40、.由勾股定理得AB1AB2AB3.小蚂蚁吃到火腿肠的最短路程为AB1,长为 cm.2 74例6 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家他要完成这件事情所走的最短路程是多少?牧童A小屋BAC东北解:如图,作出点A关于河岸的对称点A,连接AB,则AB就是最短路程.由题意得AC=4+4+7=15(km),BC=8km.在RtACB中,由勾股定理得2215817.A B 求直线同侧的两点到直线上一点所连线段的和的最短路程的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另
41、一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路程.归纳如图,是一个边长为1的正方体硬纸盒,现在A处有一只蚂蚁,想沿着正方体的外表面到达B处吃食物,求蚂蚁爬行的最短距离是多少.AB解:由题意得AC =2,BC=1,在RtABC中,由勾股定理得 AB= AC+ BC=2+1=5AB= ,即最短路程为 .21ABC55练一练1.从电线杆上离地面5m的C处向地面拉一条长为7m的钢缆,则地面钢缆A到电线杆底部B的距离是()A.24m B.12m C. m D. m 742 6D当堂练习当堂练习2.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可
42、能是()A.9cm B.12cm C.15cm D.18cm D3.如图,有两棵树,一棵高8米,另一棵高2米,两棵对相距8米.一只鸟从一棵树的树梢飞到另一棵的树梢,问小鸟至少飞行多少? ABC解:如图,过点A作ACBC于点C.由题意得AC=8米,BC=8-2=6(米), 答:小鸟至少飞行10米.2210ABACBC米.4.如图,是一个三级台阶,它的每一级的长、宽和高分别等于55cm,10cm和6cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路的长是多少?BAABC解:台阶的展开图如图,连接AB.在RtABC中,根
43、据勾股定理得AB2=BC2AC25524825329, AB=73cm.5. 为筹备迎新晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图.已知圆筒的高为108cm,其横截面周长为36cm,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?能力提升:解:如右下图,在RtABC中,因为AC36cm,BC108427(cm)由勾股定理,得AB2AC2BC23622722025452,所以AB45cm,所以整个油纸的长为454180(cm)课堂小结课堂小结勾股定理的应用用勾股定理解决 实 际 问 题用勾股定理解决点的距离及路径最短问题1.2 直角三角形的性质和判定()第1章 直角三角
44、形导入新课讲授新课当堂练习课堂小结第3课时 勾股定理的逆定理 八年级数学下(XJ) 教学课件学习目标1.掌握勾股定理的逆定理及勾股数.(重点)2.能证明勾股定理的逆定理,能利用勾股定理的逆 定理判断一个三角形是直角三角形.(难点)3.能够运用勾股定理的逆定理解决问题(难点) 导入新课导入新课B C A 问题1 勾股定理的内容是什么? 如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.bca问题2 求以线段a、b为直角边的直角三角形的斜边c的长: a3,b4; a2.5,b6; a4,b7.5.c=5c=6.5c=8.5复习引入思考 以前我们已经学过了通过角的关系来确定
45、直角三角形,可不可以通过边来确定直角三角形呢? 同学们你们知道古埃及人用什么方法得到直角的吗?(1) (2) (3) (4) (5) (6) (7) (8) (13) (12) (11) (10) (9) 打13个等距的结,把一根绳子分成等长的12段,然后以3段,4段,5段的长度为边长,用木桩钉成一个三角形,其中最大的角便是直角.情景引入思考:从前面我们知道古埃及人认为一个三角形三边长分别为3,4,5,那么这个三角形为直角三角形.按照这种做法真能得到一个直角三角形吗?大禹治水相传,我国古代的大禹在治水时也用了类似的方法确定直角.讲授新课讲授新课勾股定理的逆定理一下面有三组数分别是一个三角形的三
46、边长a, b, c: 5,12,13; 7,24,25; 8,15,17.问题 分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?0180150120906030724255131217815是下面有三组数分别是一个三角形的三边长a, b, c: 5,12,13; 7,24,25; 8,15,17.问题2 这三组数在数量关系上有什么相同点? 5,12,13满足52+122=132, 7,24,25满足72+242=252, 8,15,17满足82+152=172.问题3 古埃及人用来画直角的三边满足这个等式吗?因为32+42=52,所以满足.a2+b2=c2我觉得这个猜想不
47、准确,因为测量结果可能有误差.我也觉得猜想不严谨,前面我们只取了几组数据,不能由部分代表整体.问题3 据此你有什么猜想呢?由上面几个例子,我们猜想:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.ABC ABC ? C是直角ABC是直角三角形ABCa b c 已知:如图,ABC的三边长a,b,c,满足a2+b2=c2 求证:ABC是直角三角形构造两直角边分别为a,b的RtABC证一证:证明:作RtABC,使C=90,AC=b,BC=a,ABC ABC(SSS),C= C=90 , 即ABC是直角三角形.则22222ABBCACab .222abc,22.A BcA
48、 Bc ,ABCA B C在和中A CACB CBCA BAB ,C B aAbcACaBbc勾股定理的逆定理: 如果三角形的三边长a 、b 、c满足 a2+b2=c2,那么这个三角形是直角三角形.ACBabc 勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三边长,且满足两条较小边的平方和等于最长边的平方,即可判断此三角形为直角三角形 ,最长边所对的角为直角.特别说明:归纳总结 例1 下面以a,b,c为边长的三角形是不是直角三角形?如果是,那么哪一个角是直角?(1) a=15 , b=8 ,c=17; 解:(1)152+82=289,172=289,152+82=172,根据勾股定理的
49、逆定理,这个三角形是直角三角形,且C是直角.(2) a=13 ,b=14 ,c=15. (2)132+142=365,152=225,132+142152,不符合勾股定理的逆定理,这个三角形不是直角三角形. 根据勾股定理的逆定理,判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的平方.归纳【变式题1】若ABC的三边a,b,c满足 a:b: c=3:4:5,试判断ABC的形状.解:设a=3k,b=4k,c=5k(k0),因为(3k)2+(4k)2=25k2,(5k)2=25k2,所以(3k)2+(4k)2=(5k)2,所以ABC是直角三角形,且C是直角. 已知三角形三边
50、的比例关系判断三角形形状:先设出参数,表示出三条边的长,再用勾股定理的逆定理判断其是否是直角三角形.如果三角形的三边比中有两个相同的数,那么该三角形还是等腰三角形.归纳【变式题2】(1)若ABC的三边a,b,c,且a+b=4,ab=1,c= ,试说明ABC是直角三角形.14解:因为a+b=4,ab=1,所以a2+b2=(a+b)2-2ab=16-2=14.又因为c2=14,所以a2+b2=c2,所以ABC是直角三角形.(2) 若ABC的三边 a,b,c 满足a2+b2+c2+50=6a+8b+10c. 试判断ABC的形状.解: a2+b2+c2+50=6a+8b+10c, a26a+9+b28