1、勾股定理:勾股定理:直角三角形两直角边的平直角三角形两直角边的平方和等于斜边的平方方和等于斜边的平方复习:abcABC如果在如果在Rt ABC中,中,C=90,那么那么222.abc结论变形结论变形c2 = a2 + b2abcABC(1)求出下列直角三角形中未知的边)求出下列直角三角形中未知的边610ACB8A15CB练练 习习302245回答:回答:在解决上述问题时,每个直角三角形需知道几个条件?在解决上述问题时,每个直角三角形需知道几个条件?直角三角形哪条边最长?直角三角形哪条边最长?(2)在长方形)在长方形ABCD中,宽中,宽AB为为1m,长,长BC为为2m ,求,求AC长长1 m2
2、mACBD2222125ACABBC在在Rt ABC中,中,B=90,由勾股定理可知:由勾股定理可知:例1一个门框尺寸如下图所示一个门框尺寸如下图所示若有一块长若有一块长3米,宽米,宽0.8米的薄木板,问怎样从门框通过?米的薄木板,问怎样从门框通过?若薄木板长若薄木板长3米,宽米,宽1.5米呢?米呢?若薄木板长若薄木板长3米,宽米,宽2.2米呢?为什么?米呢?为什么?ABC1 m2 m木板的宽木板的宽2.2米大于米大于1米,米, 横着不能从门框通过;横着不能从门框通过;木板的宽木板的宽2.2米大于米大于2米,米,竖着也不能从门框通过竖着也不能从门框通过 只能试试斜着能否通过,只能试试斜着能否通
3、过,对角线对角线AC的长最大,因此需的长最大,因此需要求出要求出AC的长,怎样求呢?的长,怎样求呢?有一个边长为有一个边长为50dm 的正方形洞口,想用一的正方形洞口,想用一个圆盖去盖住这个洞口,圆的直径至少多个圆盖去盖住这个洞口,圆的直径至少多长?(结果保留整数)长?(结果保留整数)50dmABCD22225050500071()ACABBCdm 解:解:在在Rt ABC中,中,B=90, AC=BC=50,由勾股定理可知:由勾股定理可知:练习一(1)如图,池塘边有两点)如图,池塘边有两点A、B,点,点C是与是与BA方方向成直角的向成直角的AC方向上的一点,测得方向上的一点,测得CB= 60
4、m,AC= 20m ,你能求出,你能求出A、B两点间的距离吗?两点间的距离吗? (结果保留整数)(结果保留整数)练习二例例2:一架一架2.62.6m长的梯子长的梯子AB斜靠在一竖直的墙斜靠在一竖直的墙AO上,上, 这时这时AO的距离为的距离为2.4m如果梯子顶端如果梯子顶端A沿墙下滑沿墙下滑0.50.5m,那么梯,那么梯子底端子底端B也外移也外移0.5m吗?吗? DC解:在RtAOB中,AOB=90 AO2+ BO2AB2 2.42+ BO22.62 OB1由题意得:CDAB2.6OCAOAC2.40.51.9BD1.7710.77梯子顶端梯子顶端A沿墙下滑沿墙下滑0.5m,梯子底端,梯子底端
5、B并不是外移并不是外移0.5m,而是外,而是外移约移约0.77m在RtCOD中, COD=90 CO2+ OD2CD2 1.92+ OD2 2.62 OD 1.77ABCO15. 3 练习练习:如图,一个如图,一个3米长的梯子米长的梯子AB,斜着靠在,斜着靠在竖直的墙竖直的墙AO上,这时上,这时AO的距离为的距离为2.5米米求梯子的底端求梯子的底端B距墙角距墙角O多少米?多少米?如果梯子的顶端如果梯子的顶端A沿墙角下滑沿墙角下滑0.5米至米至C,请同学们请同学们:猜一猜,底端也将滑动猜一猜,底端也将滑动0.5米吗?米吗?算一算,底端滑动的距离近似值算一算,底端滑动的距离近似值是多少是多少? (
6、结果保留两位小数)(结果保留两位小数)例例3:如图,铁路上如图,铁路上A,B两点相距两点相距25km,C,D为两庄,为两庄,DAAB于于A,CBAB于于B,已知,已知DA=15km,CB=10km,现在要在铁路现在要在铁路AB上建一个土特产品收购站上建一个土特产品收购站E,使得,使得C,D两村到两村到E站的距离相等,则站的距离相等,则E站应建在离站应建在离A站多少站多少km处?处?CAEBDx25-x解:解:设设AE= x km,根据勾股定理,得根据勾股定理,得 AD2+AE2=DE2 BC2+BE2=CE2又又 DE=CE AD2+AE2= BC2+BE2即:即:152+x2=102+(25
7、-x)2答:答:E站应建在离站应建在离A站站10km处。处。 X=10则则 BE=(25-x)km1510例例4:在我国古代数学著作在我国古代数学著作九章算术九章算术中记载了一道有趣的问题中记载了一道有趣的问题这个问题意思是:有一个水池,水面是一个边长为这个问题意思是:有一个水池,水面是一个边长为10尺的正方形尺的正方形,在水池的中央有一根新生的芦苇,它高出水面在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦尺,如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的深度苇拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的深度和这根芦苇的长度各是多少?和这根芦苇的长度各是多少
8、?DABC解解:设水池的深度设水池的深度AC为为X米米,则芦苇高则芦苇高AD为为 (X+1)米米.根据题意得根据题意得:BC2+AC2=AB252+X2 =(X+1)225+X2=X2+2X+1 X=12 X+1=12+1=13(米)答答:水池的深度为水池的深度为12米米,芦苇高为芦苇高为13米米.例例5:矩形矩形ABCD如图折叠,使点如图折叠,使点D落在落在BC边上的点边上的点F处,已知处,已知AB=8,BC=10,求折痕,求折痕AE的长。的长。ABCDFE解解:设设DE为为X,X(8- X)则则CE为为 (8 X).由题意可知由题意可知:EF=DE=X,XAF=AD=1010108 B=9
9、0 AB2+ BF2AF282+ BF2102 BF6CFBCBF106464 C=90 CE2+CF2EF2(8 X)2+42=X264 16X+X2+16=X280 16X=016X=80X=5例6: 如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着正方体的外表面爬到顶点B的最短距离是( ). (A)3 (B ) 5 (C)2 (D)1ABABC21分析: 由于蚂蚁是沿正方体的外表面爬行的,故需把正方体展开成平面图形(如图).B练习 如图,分别以如图,分别以Rt ABC三边为边三边为边向外作三个正方形,其面积分别用向外作三个正方形,其面积分别用S1、S2、S3表示,容易得出表示,容易得出S1、S2、S3之间之间有的关系式为有的关系式为 123SSS变式:变式:你还能求你还能求出出S1、S2、S3之间之间的关系式吗?的关系式吗?S1S2S3这节课你有什么收获?这节课你有什么收获?