1、11.2.2 三角形的外角第十一章 三角形导入新课讲授新课当堂练习课堂小结情境引入学习目标1.理解并掌握三角形的外角的概念2.能够在能够复杂图形中找出外角.(难点)3.掌握三角形的一个外角等于与它不相邻的两个内角的和(重点)导入新课导入新课复习引入1.在ABC中,A=80, B=52,则C= .2.在ABC中,已知A: B:C= 2:3:5,则. ABC是 三角形3.什么是三角形的内角?其和等于多少?48 直角三角形相邻两边组成的角叫做三角形的内角,它们的和是180 .讲授新课讲授新课三角形的外角的概念一u定义如图,把ABC的一边BC延长,得到ACD,像这样,三角形的一边与另一边的延长线组成的
2、角,叫做三角形的外角.ABCD(ACD是ABC的一个外角画一画:画出ABC的所有外角,请指出来有哪几个.ABC的6个外角有什么关系?(从位置关系和数量关系)(ABC123456ABC有6个,它们是1, 2, 3, 4, 5, 6.1和4, 是对顶角,相等;2和5, 是对顶角,相等;3和6, 是对顶角,相等.填一填:(1)如图,在ABC中, A=70, B=60,则ACD= .(2)任意一个三角形的外角与它不相邻的两个内角是否都有(1)中这种关系呢?三角形的外角的性质二ABCD(探究交流130 ACD= A+ B.u三角形内角和定理的推论ABCD(三角形的外角等于与它不相邻的两个内角的和.u应用
3、格式: ACD是ABC的一个外角 ACD= A+ B.知识要点 三角形外角与内角的关系: (1)位置关系:相邻和不相邻. (2)数量关系:外角与相邻内角互补, 外角大于不相邻的任何一个内角.注意练一练:说出下列图形中1和2的度数:ABCD(80 60 (21(1)ABC(2150 32 (2)1=40 , 2=140 1=18 , 2=130 三角形的外角和三 如图, BAE, CBF, ACD是ABC的三个外角,它们的和是多少?解:由三角形的一个外角等于与它不相邻的两个内角的和,得BAE= 2+ 3,CBF= 1+ 3,ACD= 1+ 2.又知又知1+ 2+ 3=180 ,所以所以BAE+
4、CBF+ ACD=2(1+ 2+ 3)=360 .ABCEFD(213你还有其他解法吗?方法二:如图,BAE+1=180 , CBF +2=180 ,ACD +3=180 ,又知又知1+ 2+ 3=180 ,+ + 得BAE+ CBF+ ACD+(1+ 2+ 3)=540 ,所以BAE+ CBF+ ACD=540 -180=360.ABCEFD(213知识要点三角形的外角和等于360.ABCEFD(213BAE+ CBF+ ACD=2(1+ 2+ 3)=360 .典例精析例 (一题多解)如图,计算BDC.ABCD(51 20 30 ABDEACDE思路点拨:添加适当的辅助线将四边形问题转化为三
5、角形问题.ABCD(51 20 30 解:(解法一)连接AD并延长于点E.在ABD中,1+ABD=3,在ACD中,2+ACD=4.因为BDC=3+4,BAC=1+2,所以BDC=BAC+ABD+ACD =51 +20+30=101.E )12)3)4ABCD(51 20 30 E )1(解法二)延长BD交AC于点E.在ABE中,1=ABE+BAE,在ECD中,BDC=1+ECD.所以BDC=BAC+ABD+ACD =51 +20+30=101.(解法三)连接延长CD交AB于点F.(解题过程同解法二))2ABCD(132(u重要发现:BDC= 1+ 2+ 3.当堂练习当堂练习 1.判断下列命题的
6、对错.(1)三角形的外角和是指三角形的所有外角的和. ( )(2)三角形的外角和等于它的内角和的2倍. ( )(3)三角形的一个外角等于两个内角的和. ( )(4)三角形的一个外角等于与它不相邻的两个内角的和.( )(5)三角形的一个外角大于任何一个内角. ( )(6)三角形的一个内角小于任何一个与它不相邻的外角.( )2.下面的推理题把小明难住了.他希望同学们能尽快的帮他解决下面的问题.根据下列线索推理出这个三角形有关的角.线索1:在ABC中,B=C ;线索2:它的一个外角是100;问题:它的各个内角各是多少度? 100BCA50,50,80或80,80,20.答:它的各个内角分别为100B
7、CA3.(1)如图,BDC是_的外角,也是 的外角.(2)请指出BDC, DEA, ECA三者的大小关系. (3)若B=45 , BAE=36 , BCE=20 ,试求试求AEC的度数的度数.ABCDEADEADCBDC DEA ECA解:根据三角形外角的性质有ADC= B+ BCE,AEC= ADC+ BAE.所以所以AEC= B+BCE+ BAE=45 +20 +36 =101 .4 .如图,D是ABC的BC边上一点,B=BAD, ADC=80,BAC=70,求:(1)B 的度数; (2)C的度数.在ABC中:B+BAC+C=180,C=180-40-70=70.解:因为ADC是ABD的外角.所以ADC=B+BAD=80.又因为B=BAD,40AB708018040 ,2B所以CD123BACPNMDEF能力提升:如图,试求出ABCDEF=.360课堂小结课堂小结三角形的外角定 义角一边必须是三角形的一边,另一边必须是三角形另一边的延长线性 质三角形的一个外角等于与它不相邻的两个内角的和三角形的外 角 和三角形的外角和等于360 见本课时练习课后作业课后作业