半导体光电子学ppt课件.pptx

上传人(卖家):三亚风情 文档编号:2515938 上传时间:2022-04-28 格式:PPTX 页数:132 大小:6.59MB
下载 相关 举报
半导体光电子学ppt课件.pptx_第1页
第1页 / 共132页
半导体光电子学ppt课件.pptx_第2页
第2页 / 共132页
半导体光电子学ppt课件.pptx_第3页
第3页 / 共132页
半导体光电子学ppt课件.pptx_第4页
第4页 / 共132页
半导体光电子学ppt课件.pptx_第5页
第5页 / 共132页
点击查看更多>>
资源描述

1、半导体光电子学 教师简介n简历(程立文)n2005年吉林大学电子科学与技术本科;2008年中科院长春光机所光电子学硕士;2012年中科院上海技术物理研究所微电子学与固体电子学博士n2012年到扬大任教n现主要从事研究方向:n光电子器件芯片设计和优化;n教学课程n专业软件应用LED及固态照明传感器原理及应用光电子学n联系方式nE-MAIL:lwcheng n办公地点:瘦西湖校区物理楼(57号楼)214学习要求n课堂要求n要求出勤率。n准时到位,迟到者请在后排就坐,迟到10分钟以上免进。勿中途退场。n可以随时提问、讨论和嘲笑。n作业要求n要求独立完成作业,抄写作业且还不会者,成绩0分。n考核要求n

2、平时考核:出勤+作业讨论,成绩占30;n期末考试:闭卷(含实验设计),成绩占70%。 绪绪 论论F半导体光电子技术的发展及应用 F主要内容F学习本课程的意义 F参考教材F半导体光电子技术的发展及应用半导体光电子技术的发展及应用 半导体光电子学:半导体光电子学: 是研究半导体中是研究半导体中光子光子-电子电子相互作用,相互作用,光光能与电能能与电能相互转换的一门学科。相互转换的一门学科。涉及的学科:涉及的学科:量子力学、固体物理、半导体物量子力学、固体物理、半导体物理、半导体光电子材料、半导体光电子器件、理、半导体光电子材料、半导体光电子器件、光学光学F半导体光电子技术的发展及应用半导体光电子技

3、术的发展及应用 发展:发展: 半导体光电子学的产生可以追述到半导体光电子学的产生可以追述到19世纪,那个时世纪,那个时候人们就发现了半导体中的候人们就发现了半导体中的光吸收和光电导光吸收和光电导现象。现象。上个世纪上个世纪60年代得到飞速发展,这主要归因于年代得到飞速发展,这主要归因于半导半导体激光器(体激光器(LD)的出现。的出现。1962年第一台半导体激光年第一台半导体激光器诞生,是由美国器诞生,是由美国GE公司的霍尔公司的霍尔(Hall)研制成的。研制成的。这一时期的半导体激光器的特点是:这一时期的半导体激光器的特点是:同质结同质结材料,材料,激光器的激光器的阈值电流密度阈值电流密度特别

4、高,只能在液氮温度特别高,只能在液氮温度(77k)或更低的温度下状态)或更低的温度下状态脉冲脉冲工作,没有任何实工作,没有任何实用价值。用价值。1969年美国研制出年美国研制出SHLD(Single Heterojunction Laser Diode),1970年前苏联研年前苏联研制出制出DHLD(Double Heterojunction Laser Diode)。双异质结激光器电流密度大大降低,实现。双异质结激光器电流密度大大降低,实现了室温下连续工作,就在同一时间低损耗光纤研制了室温下连续工作,就在同一时间低损耗光纤研制成功。成功。 这两项技术使得光纤通信得以实现,获得飞这两项技术使得

5、光纤通信得以实现,获得飞速发展。光纤通信的发展对半导体光电子技速发展。光纤通信的发展对半导体光电子技术提出了越来越高的要求,因而促进了半导术提出了越来越高的要求,因而促进了半导体光电子学的进一步发展,近三十年是半导体光电子学的进一步发展,近三十年是半导体光电子学发展最快的一个时期,现在它已体光电子学发展最快的一个时期,现在它已经发展成为一门独立的学科,半导体光电子经发展成为一门独立的学科,半导体光电子技术是当今各国广泛关注的高科技领域。半技术是当今各国广泛关注的高科技领域。半导体光电子产业是导体光电子产业是21世纪最有希望的产业。世纪最有希望的产业。 F半导体光电子技术的发展及半导体光电子技术

6、的发展及应用应用 半导体光电子器件及其应用:半导体光电子器件及其应用: 半导体激光器半导体激光器:因其体积小、耗电少、寿:因其体积小、耗电少、寿命长,应用领域十分广,命长,应用领域十分广,VCD(780nm)、CD-ROM、DVD(635nm,650nm)中读取数中读取数据,激光打印、计算机直接印刷、医疗中切据,激光打印、计算机直接印刷、医疗中切割,内窥镜光源,工业中打孔、焊接、切割,割,内窥镜光源,工业中打孔、焊接、切割,泵浦源,光纤通信中光发射机的核心、中继泵浦源,光纤通信中光发射机的核心、中继器关键,军事上:测距、红外夜视,激光雷器关键,军事上:测距、红外夜视,激光雷达,激光制导,激光打

7、靶。(达,激光制导,激光打靶。(6个方面:个方面:日常、日常、工业、医疗、军事、通信、泵浦源等工业、医疗、军事、通信、泵浦源等)Wavelength:532nm、Spot mode:TEM00、Operation material:Nd:YVO4+KTPOutput power:5mW/10mW/20mW、Line breadth: 0.1nm、Beam diameter:0.2mmBeam divergence:1.22.4mrad、Work temperature:1035、Preheat time: 10minutes、Life: 5000hours 激光中心波长:808nm、940nm

8、、980nm输出功率:15-50W 光谱线宽:3nm 或 5nm 输出方式:自由光输出或光纤输出 波长公差:+/-10 (+/-3)nm 标准寿命:10000小时 发光二极管发光二极管(LED-Light Emitting Diode):低电低电压、低功耗、高亮度、寿命远比白炽灯长,响应速度快。压、低功耗、高亮度、寿命远比白炽灯长,响应速度快。可见光的用作家电、仪器设备的指示灯,七段数字显示、可见光的用作家电、仪器设备的指示灯,七段数字显示、图形显示、交通指示灯、汽车尾灯,室外大型显示(三图形显示、交通指示灯、汽车尾灯,室外大型显示(三色全了),不可见光的用在遥控器、光通信、传感器中。色全了)

9、,不可见光的用在遥控器、光通信、传感器中。 半导体光探测器半导体光探测器:光电成像,自动控制,辐射测量,:光电成像,自动控制,辐射测量,弱信号探测,军事上,跟踪、制导、侦察、遥感。弱信号探测,军事上,跟踪、制导、侦察、遥感。 太阳能电池:太阳能电池:耗电低的产品,如万用表、时钟、电耗电低的产品,如万用表、时钟、电子计算机(子计算机(LCD-liquid crystal display)显示的,灯)显示的,灯塔,海上航标灯,人造卫星,家用太阳能热水器。塔,海上航标灯,人造卫星,家用太阳能热水器。 CCD图象传感器图象传感器(固体摄像器件):传真机、扫描(固体摄像器件):传真机、扫描仪、摄像机、数

10、字照相机中都用到,光谱分析。仪、摄像机、数字照相机中都用到,光谱分析。F主要内容: n 半导体中光子-电子相互作用n 异质结及光波导方面的理论n 半导体激光器n 发光二极管n 半导体光探测器n 太阳能电池n CCD图象传感器F学习本课程的意义:n就业方向之一:半导体光电子学以半导体为基础,半导体器件有电子器件和光子器件。n光电子技术发展迅速。n考研:北京大学、清华大学、北师大、北邮、华中科技大学、中科院苏州纳米所、中科院半导体所F参考教材n黄德修.半导体光电子学.电子工业出版社,2013.01n江剑平.半导体激光器.电子工业出版社.2000.02讨论和建议!第一章第一章 半导体中光子半导体中光

11、子-电子的相互作用电子的相互作用F前言:半导体物理基础前言:半导体物理基础F1.1 半导体中量子跃迁的特点半导体中量子跃迁的特点F1.2 直接带隙与间接带隙跃迁直接带隙与间接带隙跃迁F1.3 光子密度分布光子密度分布F1.4 电子态密度与占据几率电子态密度与占据几率F1.5 跃迁速率与爱因斯坦关系跃迁速率与爱因斯坦关系F1.6 半导体中的载流子复合半导体中的载流子复合 F1.7 增益系数与电流密度的关系增益系数与电流密度的关系F小结小结F前言:半导体物理基础前言:半导体物理基础Q参照课件:参照课件:半导体物理半导体物理 上海交通大学物理系:半导体第上海交通大学物理系:半导体第1章半导体中的电子

12、状态章半导体中的电子状态Q能带模型:能带模型: 孤立原子孤立原子、电子有确定的能级结构。在、电子有确定的能级结构。在固体固体中则不同,由中则不同,由于原子之间距离很近,相互作用很强,在晶体中电子在理于原子之间距离很近,相互作用很强,在晶体中电子在理想的想的周期势场周期势场内作内作共有化运动共有化运动 。 原子的内层电子的状态几乎没有变化,原子的内层电子的状态几乎没有变化,其能量仍是一些分立的能级,然而原子其能量仍是一些分立的能级,然而原子的外层电子(价电子)的状态发生了很的外层电子(价电子)的状态发生了很大的变化,由于共有化运动,外层每个大的变化,由于共有化运动,外层每个运动轨道容纳的电子个数

13、增多,由泡利运动轨道容纳的电子个数增多,由泡利不相容原理知每个轨道只能容纳自旋方不相容原理知每个轨道只能容纳自旋方向不同的两个电子,轨道不够用,轨道向不同的两个电子,轨道不够用,轨道对应的能级发生分裂,由一个变为对应的能级发生分裂,由一个变为N(固固体中原子的个数体中原子的个数)靠得很近的能级,就形靠得很近的能级,就形成了一个能带。这样能级就变成了能带成了一个能带。这样能级就变成了能带Eg=Ec- Ev 能量低者称为能量低者称为价带价带,能量高者称为导带,能量高者称为导带,导带和价带之间的带隙没有电子状态,称导带和价带之间的带隙没有电子状态,称为为禁带禁带。根据导带被根据导带被电子填充情电子填

14、充情况和禁带的况和禁带的宽度可将固宽度可将固体分为导体、体分为导体、半导体和绝半导体和绝缘体。缘体。在室温下,由于热激发或入射光子吸收,使得满带中一部分电在室温下,由于热激发或入射光子吸收,使得满带中一部分电子跃迁到空带中。这时,原来的满带称为价带;原来的空带称子跃迁到空带中。这时,原来的满带称为价带;原来的空带称为导带。同时,在导带和价带中分别产生等量的电子和空穴。为导带。同时,在导带和价带中分别产生等量的电子和空穴。 导带电子和价带空穴在晶体中可以自由移动导带电子和价带空穴在晶体中可以自由移动 Q电子、空穴和有效质量电子、空穴和有效质量 一个电子由价带跃迁至导带,就在价带留下一个电子由价带

15、跃迁至导带,就在价带留下一个空量子状态,可以把它看成是带正电荷一个空量子状态,可以把它看成是带正电荷的准粒子,称之为空穴(的准粒子,称之为空穴(hole)。这个过程)。这个过程是电子是电子-空穴对的空穴对的产生产生,反之电子由导带跃迁,反之电子由导带跃迁至价带,价带内丢失一个空穴,是电子空穴至价带,价带内丢失一个空穴,是电子空穴对的对的复合复合。二者为。二者为载流子载流子。 半导体中一般采用电子的半导体中一般采用电子的有效质量有效质量替代替代电子的惯性质量,这样载流子的运动规电子的惯性质量,这样载流子的运动规律就可以用经典力学方程来描述,起到律就可以用经典力学方程来描述,起到了简化作用,这是一

16、种近似,称有效质了简化作用,这是一种近似,称有效质量近似,用量近似,用 me表示。为了方便,空穴表示。为了方便,空穴同样用有效质量表示,用同样用有效质量表示,用 mh表示。表示。讨论和建议!F1.1 半导体中量子跃迁的特点半导体中量子跃迁的特点特点:特点:1、量子现象、量子现象 2、能级、能级 能带能带半导体中三种光现象半导体中三种光现象 1. 受激吸收受激吸收 2. 自发发射自发发射 3. 受激发射受激发射 半导体中三种光现象的关系半导体中三种光现象的关系 受激吸收与受激发射是互逆的,而受激发射与自发发受激吸收与受激发射是互逆的,而受激发射与自发发射的区别在于这种跃迁中是否有外来光子的参与射

17、的区别在于这种跃迁中是否有外来光子的参与 此外还有非辐射跃迁 半导体中量子跃迁的突出特点半导体中量子跃迁的突出特点 (能级-能带)n1. 半导体能带中存在半导体能带中存在高的电子态密度高的电子态密度,用来产生粒子数反转分,用来产生粒子数反转分布的电子数很大,因而在半导体中可能具有很高的量子跃迁速布的电子数很大,因而在半导体中可能具有很高的量子跃迁速率。可以得到比其它气体或固体激光器工作物质率。可以得到比其它气体或固体激光器工作物质高几个数量级高几个数量级的光增益系数的光增益系数(可达(可达50-100 cm-1)。)。n2. 半导体同一能带中不同状态的电子之间存在相当大的互作用半导体同一能带中

18、不同状态的电子之间存在相当大的互作用(公有化运动),这种互作用碰撞过程的时间常数与辐射跃迁(公有化运动),这种互作用碰撞过程的时间常数与辐射跃迁的时间常数相比是很短的,因而能维持每个带内的准平衡,电的时间常数相比是很短的,因而能维持每个带内的准平衡,电子跃迁留下空状态将迅速由其它电子补充,所以半导体激光器子跃迁留下空状态将迅速由其它电子补充,所以半导体激光器和其它半导体器件有很和其它半导体器件有很高的量子效率和很好的高频响应特性高的量子效率和很好的高频响应特性。n3. 半导体中的电子态可以通过扩散或传导在材料中传播,可以半导体中的电子态可以通过扩散或传导在材料中传播,可以将载流子直接注入发光二

19、极管或激光器的有源区中(电子将载流子直接注入发光二极管或激光器的有源区中(电子-空空穴复合区),因而有很穴复合区),因而有很高的能量转换效率高的能量转换效率。n4. 在两能级激光系统中,每一处于激发态的电子有唯一返回的在两能级激光系统中,每一处于激发态的电子有唯一返回的基态,而在半导体中,理想本征半导体这种跃迁选择定则还能基态,而在半导体中,理想本征半导体这种跃迁选择定则还能成立,而实际的半导体中由于材料不纯,载流子之间存在相互成立,而实际的半导体中由于材料不纯,载流子之间存在相互作用,这种作用,这种跃迁选择受到松弛,不严格,跃迁发生在大量的导跃迁选择受到松弛,不严格,跃迁发生在大量的导带电子

20、与价带空穴之间,这使得辐射谱线较宽,单色性差带电子与价带空穴之间,这使得辐射谱线较宽,单色性差(固(固体激光器体激光器0.210-3 nm,半导体激光器,半导体激光器0.02-0.05 nm)。)。n直接带隙与间接带隙 F1.2 直接带隙与间接带隙跃迁n间接带隙半导体中电子在导带极小值与价带间接带隙半导体中电子在导带极小值与价带极大值之间的跃迁在能带图中表现为非竖直极大值之间的跃迁在能带图中表现为非竖直方向,方向,称为非竖直跃迁,或间接跃迁称为非竖直跃迁,或间接跃迁。n直接带隙半导体中电子在导带极小值与价带直接带隙半导体中电子在导带极小值与价带极大值之间的跃迁在能带图中表现为竖直方极大值之间的

21、跃迁在能带图中表现为竖直方向,向,称为竖直跃迁,或直接跃迁称为竖直跃迁,或直接跃迁。n跃迁的跃迁的K选择定则选择定则:不管是竖直跃迁还是非竖:不管是竖直跃迁还是非竖直跃迁,也不论是吸收光子还是发射光子,量直跃迁,也不论是吸收光子还是发射光子,量子系统总的动量和能量必须守恒。子系统总的动量和能量必须守恒。n给定电子跃迁的初始态能量和动量及终态能量给定电子跃迁的初始态能量和动量及终态能量和动量,当跃迁只涉及和动量,当跃迁只涉及一个光子一个光子时,选择定则时,选择定则可表示为:可表示为:0hvEEfi0)(pfikkk hvEknhPnk22hh为普朗克常数为普朗克常数6.62510-34JS。德布

22、罗意关系德布罗意关系 波长为波长为1um的光子,的光子, Kp 约为约为6*104cm-1 /a。Kp Ki, kffikk 0)(pfikkk这说明,如果这说明,如果只有导带电子和价带空穴参与发射光子只有导带电子和价带空穴参与发射光子的过程,导带电子和价带空穴必须具有相同的动量的过程,导带电子和价带空穴必须具有相同的动量。n在间接带隙半导体中就不遵守在间接带隙半导体中就不遵守1.2-2式,为式,为满足选择定则,跃迁过程一定有声子参与满足选择定则,跃迁过程一定有声子参与(声子:晶格振动能量的单位,有能量、声子:晶格振动能量的单位,有能量、动量动量)。这时动量守恒可表示为:)。这时动量守恒可表示

23、为: fikk 0)(spfikkkk0)(sfikkk0sfihvEE正号表示吸收光子、声子,负号表示发射光子、声子正号表示吸收光子、声子,负号表示发射光子、声子SiSi晶体的能带结构是这样的:晶体的能带结构是这样的:在这里,导带底和价带顶不是在相同的动量位置上。而导带电在这里,导带底和价带顶不是在相同的动量位置上。而导带电子在导带底能量最小,价带空穴在价带顶能量最小。如果存在子在导带底能量最小,价带空穴在价带顶能量最小。如果存在导带电子和价带空穴,它们首先填充这两个位置。具有这种能导带电子和价带空穴,它们首先填充这两个位置。具有这种能带结构的半导体称为间接带隙半导体。带结构的半导体称为间接

24、带隙半导体。 在间接带隙半导体中,导带电子与价带空穴如果直接复合就不在间接带隙半导体中,导带电子与价带空穴如果直接复合就不满足动量守恒定律。因此,间接带隙半导体导带电子与价带空满足动量守恒定律。因此,间接带隙半导体导带电子与价带空穴的复合必须借助复合中心。这个复合中心可以是晶体缺陷或穴的复合必须借助复合中心。这个复合中心可以是晶体缺陷或杂质,它处于价带顶上方的带隙中的杂质,它处于价带顶上方的带隙中的ErEr处。当电子与空穴复合处。当电子与空穴复合时,电子首先被复合中心俘获,然后再与空穴复合。在俘获过时,电子首先被复合中心俘获,然后再与空穴复合。在俘获过程中电子的能量和动量改变传递给晶格振动,即

25、传递给声子。程中电子的能量和动量改变传递给晶格振动,即传递给声子。这样会降低发光效率。所以,大多数发光装置都不采用这种材这样会降低发光效率。所以,大多数发光装置都不采用这种材料,而采用直接带隙半导体材料。料,而采用直接带隙半导体材料。 GaAsGaAs就是一种直接带隙半导体材料。它的晶体结构如图。就是一种直接带隙半导体材料。它的晶体结构如图。 它属于它属于闪锌矿闪锌矿结构。它与金刚石有相似的结构,每一个晶格点结构。它与金刚石有相似的结构,每一个晶格点阵上的原子与阵上的原子与4 4个相邻的原子键合。它们的区别在于:在金刚个相邻的原子键合。它们的区别在于:在金刚石结构中,每一个晶格点阵上的原子是相

26、同的;而在闪锌矿结石结构中,每一个晶格点阵上的原子是相同的;而在闪锌矿结构中,每一个晶格点阵上的原子与相邻的键合原子不同。构中,每一个晶格点阵上的原子与相邻的键合原子不同。在在GaAsGaAs晶体中,晶体中,AsAs是是5 5价的,价的,GaGa是是3 3价的。在晶体中,它们结合价的。在晶体中,它们结合所形成的键是由所形成的键是由AsAs原子和原子和GaGa原子最外层的原子最外层的s s和和p p轨道杂化形成的。轨道杂化形成的。每一个键有两个共有电子。每一个键有两个共有电子。 下图是下图是GaAsGaAs晶体的能带结构。晶体的能带结构。(a) In GaAs the minimum (a) I

27、n GaAs the minimum of the CB is directly of the CB is directly above the maximum of the above the maximum of the VB. GaAs is therefore a VB. GaAs is therefore a direct bandgap direct bandgap semiconductor semiconductor 通常,半导体激光器发射的光子能量接近带隙能量。发光波长通常,半导体激光器发射的光子能量接近带隙能量。发光波长和带隙能量用下面的式子估计和带隙能量用下面的式子估计g

28、gEEhc24. 1在第在第2 2个等式后面,个等式后面,EgEg的单位是的单位是eVeV,波长的单位是,波长的单位是mm。GaAsGaAs晶体的直接带隙是晶体的直接带隙是1.424eV1.424eV。可以发射。可以发射870-900nm870-900nm的光。的光。为了使半导体发出的光处于现代光通信的波段,通常选用为了使半导体发出的光处于现代光通信的波段,通常选用GaGax xInIn1-x1-xAsAsy yP P1-y1-y(InP)(InP)材料。这里材料。这里0 x10 x1,0y10y1,它们分别,它们分别表示表示GaGa和和AsAs含量的百分比。含量的百分比。P P和和AsAs都

29、是都是5 5价原子。如果在原来的价原子。如果在原来的GaAsGaAs晶体中用晶体中用P P取代一部分取代一部分AsAs,那么晶体的结构以及类型不会,那么晶体的结构以及类型不会改变,只是改变能带和晶格常数。同样,改变,只是改变能带和晶格常数。同样,GaGa和和InIn都是都是3 3价原子。价原子。如果在原来的如果在原来的GaAsGaAs晶体中用晶体中用InIn取代一部分取代一部分GaGa,那么晶体的结构,那么晶体的结构以及类型也不会改变,只是改变能带和晶格常数。原则上,通以及类型也不会改变,只是改变能带和晶格常数。原则上,通过改变过改变x x或或y y的值,在一定的范围内就可以得到想要的带隙,也

30、的值,在一定的范围内就可以得到想要的带隙,也就得到想要的发射波长。但是,在光通信波段的半导体激光器就得到想要的发射波长。但是,在光通信波段的半导体激光器的制造过程中,通常是以的制造过程中,通常是以InPInP材料为衬底的,然后在它的表面材料为衬底的,然后在它的表面外延生长外延生长GaGax xInIn1-x1-xAsAsy yP P1-y1-y材料。这就要求外延生长的材料的晶格材料。这就要求外延生长的材料的晶格常数要与常数要与InPInP材料的晶格常数材料的晶格常数(0.587nm)(0.587nm)一致。否则的话,半导一致。否则的话,半导体材料中就会出现缺陷,从而影响半导体激光器的发光质量和

31、体材料中就会出现缺陷,从而影响半导体激光器的发光质量和半导体激光器的寿命。外延生长的材料的晶格常数要与衬底材半导体激光器的寿命。外延生长的材料的晶格常数要与衬底材料一致的情况,也称为料一致的情况,也称为晶格匹配晶格匹配。在晶格匹配的限制下,在晶格匹配的限制下,x x和和y y的值就不能随便取了。的值就不能随便取了。在与在与InPInP材料晶格匹配的限制下,材料晶格匹配的限制下,x x和和y y之间有如下关系:之间有如下关系:yyyx45. 0031. 014526. 021.350.720.12gEeVyy在这种情况下,带隙为在这种情况下,带隙为一般情况下,在一般情况下,在0 x 10 x 1

32、,0 y 10 y 1的整个范围内,所的整个范围内,所得到的的半导体材料不一定就是直接带隙半导体。得到的的半导体材料不一定就是直接带隙半导体。但是,在但是,在0y10y1时,由时,由x0.45yx0.45y,得到,得到,0 x0.450 x0.45。在。在这个取值范围内,半导体材料就是直接带隙半导体。这个取值范围内,半导体材料就是直接带隙半导体。0y10y1所对应的波长范围是所对应的波长范围是0.920.92g1.67(m)1.67(m)。 ( (指无掺杂情况指无掺杂情况) )1.2.2跃迁几率跃迁速率(1/体积时间能量)是描述半导体能带之间跃迁特点的,跃迁几率是决定跃迁速率的一个基本量.求解

33、跃迁几率的基本出发点是考虑到与半导体中电子相互作用的辐射场是一个随时间周期变化的函数,要使用与时间有关的微扰理论。求解有关的薛定谔方程,从而得出反映电子在辐射场作用下跃迁几率的大小。求解跃迁几率的基本出发点是考虑到与半导求解跃迁几率的基本出发点是考虑到与半导体中电子相互作用的辐射场是一个随时间周体中电子相互作用的辐射场是一个随时间周期变化的函数,要使用与时间有关的微扰理期变化的函数,要使用与时间有关的微扰理论求解有关的薛定谔方程,从而得出反映电论求解有关的薛定谔方程,从而得出反映电子在辐射场作用下跃迁几率的大小。子在辐射场作用下跃迁几率的大小。跃迁矩阵元跃迁矩阵元Mn跃迁几率跃迁几率 : (费

34、米黄金准则费米黄金准则)22121,2Br t Hr t凯恩(凯恩(Kane)对直接带隙跃迁)对直接带隙跃迁-族化合物半族化合物半导体辐射跃迁几率导体辐射跃迁几率能量能量体积体积/时间时间近似表达式近似表达式2212001/(1)1 (2/3)/6gegeEme hBEmmnC-19101.602e11201085. 8mFsJh3410626. 6跃迁几率与跃迁几率与Eg基本无关,决定于电子的有效质量基本无关,决定于电子的有效质量 自旋轨道裂距,比自旋轨道裂距,比Eg小得多小得多(1.2-31) 返回讨论和建议!作业:43页第1、2、4题另:1、受激吸收、自发发射、受激发射的定义以及它们之间

35、的区别与联系。2、半导体光电子学中量子跃迁的突出特点有哪些?3、竖直跃迁和非竖直跃迁的定义以它们跃迁过程中应该满足的能量和动量的数学表达式。4、写出费米“黄金准则”的表达式,并且说明表达式中各个参数的物理含义。在讨论跃迁速率之前先弄清楚辐射场中光子密度随能量分布对分析辐射场与半导体中电子的相互作用非常重要,单位体积、单位频率间隔内的光子数光子密度分布,需要求出两个量,一是光子状态密度,另一个是这些状态被光子占据的几率。光子状态密度由电磁场方程利用边界条件得到。占据几率服从玻色-爱因斯坦(Poise-Einstein)分布律。F1.3光子密度分布与能量分布 光学腔内产生稳定振荡的条件是光子在腔内

36、来回一次的光程应等于所传播的平面波波长的整数倍,这就是驻波边界条件 ,波长受到限制nL 2L3空间驻波条件对 选取值的限制为 kkLmkxLpkyLqkz 2km、p、q为正整数 (m、p、q)值确定一个K kncE考虑1/8球壳,同时考虑光场TE模和TM模两个偏振状态,单位体积内间的光子状态数为 每个K在K空间中占据的体积为 kkk23321( )2(4)/()()8kdN kkkLkL3)(LhE cnk2nc1 2dndncnkkncEhcEnk2EhcdEnEdnk/2ddndncndN1 8)(323热平衡状态下每个状态被光子所占据的几率服从玻色-爱因斯坦分布 1)exp(1)(Tk

37、hhfB表示在温度T时能量为 光子数 ,或能量为 的状态被光子占据的几率hh之间的光子数为 ddTkhdndncndDB1)exp(18)(323d之间的光子能量 32318()exp() 1Bdnn hdndD hdhck TdEEE之间的光子数 hddE dETkEdEndnEchEnEdDB1)exp(18)(3323单位体积、单位能量间隔内的光子数有 )143 . 1 (1)exp(18)(3323TkEdEndnEchEnEPB单位体积、单位频率间隔内的光子能量密度 1)exp(18)(333TkhdndnchnhPB3232322( )323/,/,/,/,/(/)11/84/(/

38、)82( /)2/ ,21/81/d/xyzxyzxyzkkmL kpL kqLkLkLkLkkkLK LKkkLKdNkKknv ckn vvdn ndvcdNn vvdn ndvc 由驻波条件每个模体积球壳内 态数()光子态密度为:由可得: ( )323() 1/exp(/) 1( )(8/) 1 ( /)(/)/exp(/) 1iibibnhvk TVvvdvdD vndNn vcv n dn dvhv k Tdv每个态被光子占据的几率 服从玻璃爱因斯坦统计得光子密度(单位 内之间的光子数)323323V()(8/) 1 ( /)(/)/exp(/) 1()(8/) 1 ( /)(/)/

39、exp(/) 1BBvvdvdD hvn hvcv n dn dv dvhv k TP hvn hvcv n dn dvhv k T 光子密度能量分布(单位 内,之间的光子能量)单位体积,单位频率间隔内的光子能量密度F1.4 电子态密度与占据几率 在讨论跃迁速率之前先还要弄清电子态密度与占据几率,单位体积、单位能量内的电子数,似于上一节讨论光子密度分布(态密度占据几率),我们来求半导体中电子态密度与占据几率。两者之间有相同之处,在于状态密度的求解过程,不同之处是电子属于费米子,它受泡利不相容原理制约,它服从费米-狄拉克统计分布。另外半导体中电子有导带和价带之分。电子状态密度由电子波边界条件得到

40、。占据几率服从费米-狄拉克分布函数 。 与光子能态一样,半导体中电子的能态用k表示,根据驻波边界条件,在一个边长为L的立方体半导体中,波矢k满足右边式子,式中m、p、q为正整数 LmkxLpkyLqkz每一组(m、p、q)值确定一个k,确定一个状态,则在k空间中每一电子态同样占据 的体积 k k3)(L3)(Lkkkkk24因为m、p、q 只取正整数,所以只考虑1/8球壳即可,看其中有多少个状态就用上式表示,同时考虑电子两个自旋态,再乘个因子2 32)/()4(81Lkk32)/(Lkk这是在 间隔内存在的电子状态数,比上体积L3得到单位体积,得到波矢间隔为 的电子状态密度为:kkkkkkkk

41、kdN2)()(用E来表示 和 kk0222mkE对于自由电子 导带 价带 emkEkE2)0()(22hmkEkE2)0()(22取导带底为坐标原点(或能量0点),分别写出导带电子能量和价带电子能量的表达式: ecmkE222hgvmkEE2)(22导带底附近价带顶附近, kmkEe2kmkEh2, EEmmEdNceec3221)2()(EEEmmEdNvghhv3221)(2)(单位体积单位能量间隔的状态数,即状态密度分布: 导带价带3221)2(ceecEmm3221)(2vghhvEEmm 典 型 半 导体导带和价带态密度,一般情况下导带电子的有效质量比价带空穴有效质量小一个数量级,

42、所以价带态密度比导带态密度高很多。上面推导了状态密度,要想求单位体积单位能量间隔的电子数,还需知道费米-狄拉克分布函数,即每个状态被电子占据的几率。导带和价带中某一能量 被电子所占据的几率分别表示为:vcEE ,1)exp(1 TkFEfBccc1)exp(1 TkFEfBvvv1)exp(1 )(TkEEEfBF 费米-狄拉克分布函数,EF称为费米能级,它和温度、材料、导电类型、杂质含量等有关,是半导体中重要的物理参量,知道了它就知道了某个状态电子占据的几率,处于热平衡的系统具有统一的EF,处于非平衡时,带与带之间不再有统一费米能级,但带内载流子仍处在准平衡状态,因此每个带有各自的费米能级,

43、Fc,Fv,称为准费米能级 单位体积单位能量间隔的电子数 导带为 ccf价带为 vvf价带空穴为 )1 (vvf导带总的电子浓度 ccccdEfEn)(vvvdEfp)1 (价带空穴浓度本征半导体本征半导体一个未掺杂的半导体称为本征半导体。一个未掺杂的半导体称为本征半导体。在绝对温度下,在绝对温度下,只存在满带和空带。只存在满带和空带。SiSi晶体是金刚石结构。晶体中的每一个晶体是金刚石结构。晶体中的每一个SiSi原子与周围原子与周围4 4个个SiSi原子键合。每一个键是由原子键合。每一个键是由SiSi原子最外层的原子最外层的s s和和p p轨道轨道杂化形成的。每一个键有两个共有电子。杂化形成

44、的。每一个键有两个共有电子。SiSi晶体的结构和能带图晶体的结构和能带图半导体中的杂质半导体中的杂质 在实际中半导体材料中总是存在偏离理想情况的复杂现象,半导体中存在杂质和缺陷,微量的杂质对半导体的光学和电学性质都会产生显著的影响,半导体光电子器件所用的半导体材料多是通过掺入不同类型和不同浓度的杂质原子来控制半导体的电学和光学性质。对于掺杂的半导体,导带电子和价带空穴数量不再相等。对于掺杂的半导体,导带电子和价带空穴数量不再相等。 如果在如果在SiSi晶体中掺杂晶体中掺杂5 5价的原子,那么当这个杂质原子替代价的原子,那么当这个杂质原子替代SiSi原原子时,杂质与子时,杂质与4 4个个SiSi

45、原子键合。共用去原子键合。共用去4 4个电子。这样在原来的个电子。这样在原来的位置上相当于出现一个不能移动的正离子和位置上相当于出现一个不能移动的正离子和1 1个束缚在它周围的个束缚在它周围的电子。这种束缚很弱。在室温下就可以使这个束缚电子电离而电子。这种束缚很弱。在室温下就可以使这个束缚电子电离而成为可以在晶体中自由移动的电子。从能带图看,就相当于电成为可以在晶体中自由移动的电子。从能带图看,就相当于电子从杂质能级跃迁到导带。这时在晶体中,导带电子多于价带子从杂质能级跃迁到导带。这时在晶体中,导带电子多于价带空穴。这种半导体称为空穴。这种半导体称为n n型半导体。型半导体。 能够施放电子而产

46、生导电电子并形成正电中心,如族杂质在硅、锗中电离时,称其为施主杂质或施主杂质或n型杂型杂质质。施主电离施主电离,电离能电离能,被施主杂质束缚的电子的能量状态称为施主能级施主能级,施主能级位于离导带底很近的禁带中,杂质少时相互作用小,是孤立的能级,增加导电能力,主要靠导带电子导电的半导体称为n型半型半导体导体。 DEDEgDEE 如果在如果在SiSi晶体中掺杂晶体中掺杂3 3价的原子,那么当这个杂质原子替代价的原子,那么当这个杂质原子替代SiSi原原子时,杂质与子时,杂质与4 4个个SiSi原子键合。其中有一个键还缺原子键合。其中有一个键还缺1 1个电子。这样个电子。这样就等效于在原来的位置上出

47、现一个不能移动的负离子和就等效于在原来的位置上出现一个不能移动的负离子和1 1个束缚个束缚在它周围的带正电的空穴。这种束缚也很弱。在室温下就可以使在它周围的带正电的空穴。这种束缚也很弱。在室温下就可以使这个束缚空穴电离而成为可以在晶体中自由移动的空穴。从能带这个束缚空穴电离而成为可以在晶体中自由移动的空穴。从能带图看,就相当于电子从价带跃迁到杂质能级。这时在晶体中,价图看,就相当于电子从价带跃迁到杂质能级。这时在晶体中,价带空穴多于导带电子。这种半导体称为带空穴多于导带电子。这种半导体称为p p型半导体。型半导体。 族杂质在硅、锗中能够接受电子而产生导电空穴,并形成负电中心,称这种杂质为受主杂

48、质或受主杂质或p p型杂质型杂质。空穴挣脱受主束缚的过程称为受主电离受主电离,所需能量称为受受主杂质电离能主杂质电离能,把被受主杂质所束缚的空穴的能量状态称为受主能级受主能级,主要通过空穴导电的半导体称为空穴型空穴型或或p p型半导体型半导体。AEAEvEgAEE 在在n n型半导体中,电子称为型半导体中,电子称为多数载流子多数载流子。由于本征激发仍然存。由于本征激发仍然存在少量的空穴,称为在少量的空穴,称为少数载流子少数载流子。在在p p型半导体中,空穴称为型半导体中,空穴称为多数载流子多数载流子。由于本征激发仍然存。由于本征激发仍然存在少量的电子,称为在少量的电子,称为少数载流子少数载流子

49、。本征、本征、n n型和型和p p型半导体的自由电子和空穴的分布情况型半导体的自由电子和空穴的分布情况 这里,这里,E Ef f是是FermiFermi能级。根据能级。根据FermiFermi分布,温度为分布,温度为T T时处在时处在能量为能量为E E的一个量子态上的平均电子数为的一个量子态上的平均电子数为1exp1kTEEff因此因此FermiFermi能级对应于其量子态上平均电子数等于能级对应于其量子态上平均电子数等于1/21/2时的能量。时的能量。这个量子态也可能在实际固体中并不存在。它实际上代表着这个量子态也可能在实际固体中并不存在。它实际上代表着系统系统中电子在各个能级填充的统计平均

50、程度中电子在各个能级填充的统计平均程度。FermiFermi能级越高,意味能级越高,意味着填充在高能级的电子越多。着填充在高能级的电子越多。对于本征半导体,对于本征半导体,FermiFermi能级近似地位于导带底和价带顶的之能级近似地位于导带底和价带顶的之间的中点。间的中点。对于对于n n型半导体,导带电子多于价带空穴,意味着分布在高能型半导体,导带电子多于价带空穴,意味着分布在高能级的电子多,级的电子多,FermiFermi能级向导带靠近。能级向导带靠近。对于对于p p型半导体,价带空穴多于导带电子,意味着分布在低能型半导体,价带空穴多于导带电子,意味着分布在低能级的电子多,级的电子多,Fe

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(半导体光电子学ppt课件.pptx)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|