1、一阶线性微分方程 第四节 第七章 一、一阶线性微分方程一、一阶线性微分方程一阶线性微分方程标准形式:)()(ddxQyxPxy若 Q(x) 0, 0)(ddyxPxy若 Q(x) 0, 称为非齐次方程非齐次方程 .1. 解齐次方程分离变量xxPyyd)(d两边积分得CxxPylnd)(ln故通解为xxPCyd)(e称为齐次方程齐次方程 ;xxPCyd)(e对应齐次方程通解齐次方程通解非齐次方程特解xxPCd)(e2. 解非齐次方程)()(ddxQyxPxy用常数变易法常数变易法:,e)()()(xxPxuxyd则xxPud)(e)(xPxxPud)(e)(xQ故原方程的通解xxQxxPxxPd
2、e)(ed)(d)(CxxQyxxPxxPde)(ed)(d)(y即即作变换xxPuxPd)(e)(xxPxQxud)(e)(ddCxxQuxxPde)(d)(两端积分得例例1. 解方程 .) 1(12dd25xxyxy解解: 先解,012ddxyxy即1d2dxxyy积分得,ln1ln2lnCxy即2) 1( xCy用常数变易法常数变易法求特解.,) 1()(2xxuy则) 1(2) 1(2 xuxuy代入非齐次方程得21) 1( xu解得Cxu23) 1(32故原方程通解为Cxxy232) 1(32) 1(令在闭合回路中, 所有支路上的电压降为 0例例2. 有一电路如图所示, ,sintE
3、Em电动势为电阻 R 和电. )(tiLERQ解解: 列方程 .已知经过电阻 R 的电压降为R i 经过 L的电压降为tiLdd因此有,0ddiRtiLE即LtEiLRtimsindd初始条件: 00ti由回路电压定律:其中电源求电流感 L 都是常量,解方程:LtEiLRtimsindd00tiCxxQeyxxPxxPdd)(d)(e)(由初始条件: 00ti得222LRLECm)(ti tLRdetLEmsintLRmCtLtRLREe)cossin(222ttLRdedC利用一阶线性方程解的公式可得LERQtLRmLRLEtie)(222)cossin(222tLtRLREmtLRmLRL
4、Etie)(222)sin(222tLREm暂态电流稳态电流则令,arctanRL因此所求电流函数为解的意义: LERQ0d2d3yyxyyxx例例3. 求方程的通解 .解解: 注意 x, y 同号,d2d, 0,xxxyx此时不妨设yyxyx2dd2yyP21)(yyQ1)(由一阶线性方程通解公式通解公式 , 得exyy2de1(yyy2d故方程可变形为yy1y1 lndCy 所求通解为 )0(eCCyyxyCyln这是以x为因变量 y 为自变量的一阶线性方程Cylnd)0(C*二、伯努利二、伯努利 ( Bernoulli )方程方程 伯努利方程的标准形式:)1,0()()(ddnyxQyx
5、Pxynny以)()(dd1xQyxPxyynn令,1 nyzxyynxzndd)1 (dd则)()1 ()()1 (ddxQnzxPnxz求出此方程通解后,除方程两边 , 得换回原变量即得伯努利方程的通解.解法解法:(线性方程)伯努利 例例4. 求方程2)ln(ddyxaxyxy的通解.解解: 令,1 yz则方程变形为xaxzxzlndd其通解为ez将1 yz1)ln(22xaCxyxxd1exa)ln(xxd1Cx d2)ln(2xaCx代入, 得原方程通解: 内容小结内容小结1. 一阶线性方程)()(ddxQyxPxy方法1 先解齐次方程 , 再用常数变易法.方法2 用通解公式CxxQy
6、xxPxxPde)(e)()(dd,1 nyu令化为线性方程求解.2. 伯努利方程nyxQyxPxy)()(dd)1,0(n3. 注意用变量代换将方程化为已知类型的方程例如, 解方程yxxy1ddyxyxdd, yxu, xuy1ddddxuxy法法1. 取 y 作自变量: 线性方程 法法2. 作变换 则 代入原方程得 ,11dduxuuuxu1dd可分离变量方程思考与练习思考与练习判别下列方程类型:xyyxyxyxdddd) 1()ln(lndd)2(xyyxyx0d2d)()3(3yxxxy0d)(d2)4(3yxyxyyxxyxydd)2ln()5(提示提示:xxyyydd1 可分离 变
7、量方程xyxyxylndd齐次方程221dd2xyxxy线性方程221dd2yxyyx线性方程2ln2ddyxxyxxy伯努利方程P315 1 (3) , (6) , (9) ; 2 (5) ; 6 ; *8 (1) , (3) , (5) 作业第五节 习题课1 备用题备用题1. 求一连续可导函数)(xf使其满足下列方程:ttxfxxfxd)(sin)(0提示提示:令txuuufxxfxd)(sin)(0则有xxfxfcos)()(0)0(f线性方程)esin(cos21)(xxxxf利用公式可求出2. 设有微分方程, )(xfyy其中)(xf10,2 x1,0 x试求此方程满足初始条件00
8、xy的连续解.解解: 1) 先解定解问题10, 2xyy00 xy利用通解公式, 得xyde1dde2Cxx)e2(e1CxxxCe21利用00 xy得21C故有) 10(e22xyx2) 再解定解问题1,0 xyy11e22) 1 ( yyx此齐次线性方程的通解为) 1(e2xCyx利用衔接条件得) 1(e22C因此有) 1(e) 1(e2xyx3) 原问题的解为y10),e1 (2xx1,e) 1(e2xx) 10(e22xyx( 雅各布第一 伯努利 ) 书中给出的伯努利数在很多地方有用, 伯努利伯努利(1654 1705)瑞士数学家, 位数学家. 标和极坐标下的曲率半径公式, 1695年 版了他的巨著猜度术,上的一件大事, 而伯努利定理则是大数定律的最早形式. 年提出了著名的伯努利方程, 他家祖孙三代出过十多 1694年他首次给出了直角坐 1713年出 这是组合数学与概率论史此外, 他对双纽线, 悬链线和对数螺线都有深入的研究 .