1、绝密启用前 2018年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分为第I卷(选择题)和第II卷(非选择题)两部分,共150分,考试用时120分钟。第I卷1至2页,第II卷3至5页。 答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。 祝各位考生考试顺利!第I卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。2.本卷共8小题,每小题5分,共40分。参考公式:如果事件A,B互斥,那么 .如
2、果事件A,B相互独立,那么 .棱柱的体积公式,其中表示棱柱的底面面积,表示棱柱的高.棱锥的体积公式,其中表示棱锥的底面面积,表示棱锥的高.一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集为R,集合,则A. B. C. D. 2. 【2018年天津卷文】设变量x,y满足约束条件 则目标函数的最大值为A. 6B. 19C. 21D. 453. 阅读如图所示的程序框图,运行相应的程序,若输入的值为20,则输出的值为A. 1B. 2C. 3D. 44. 设,则“”是“”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件5. 已知,则a,
3、b,c的大小关系为A. B. C. D. 6. 将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减7. 已知双曲线 离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同一条渐近线的距离分别为和,且 则双曲线的方程为A. B. C. D. 8. 如图,在平面四边形ABCD中,若点E为边CD上的动点,则的最小值为 ( )A. B. C. D. 2018年普通高等学校招生全国统一考试(天津卷)数 学(理工类)第卷注意事项:1. 用黑色墨水钢笔或签字笔将答案写在答题卡上。2. 本卷共12小题,共11
4、0分。二. 填空题:本大题共6小题,每小题5分,共30分。9. i是虚数单位,复数_.10. 在二项式展开式中,的系数为_11. 已知正方体的棱长为1,除面外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥的体积为_.12. 已知圆的圆心为,直线(为参数)与该圆相交于、两点,则的面积为_.13. 已知,且,则的最小值为_.14. 已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是_.三.解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤.15. 在中,内角A,B,C所对的边分别为a,b,c.已知.(1)求角B大小;(2)设a=2,c=3,求b
5、和的值.16. 已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.17. 如图,且AD=2BC,,且EG=AD,且CD=2FG,DA=DC=DG=2.(I)若M为CF的中点,N为EG的中点,求证:;(II)求二面
6、角的正弦值;(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60,求线段DP的长.18. 设是等比数列,公比大于0,其前n项和为,是等差数列.已知,.(I)求和通项公式;(II)设数列的前n项和为,(i)求;(ii)证明.19. 设椭圆(ab0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.(I)求椭圆的方程;(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若(O为原点) ,求k的值.20. 已知函数,其中a1.(I)求函数的单调区间;(II)若曲线在点处的切线与曲线在点 处的切线平行,证明;(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.