1、27.2 与圆有关的位置关系九年级数学下(HS) 教学课件2.直线和圆的位置关系导入新课讲授新课当堂练习课堂小结第27章 圆学习目标1.理解直线与圆有相交、相切、相离三种位置关系.2.能根据圆心到直线的距离d和圆的半径r之间的数量关系,判断出直线与圆的位置关系.(重点)点和圆的位置关系有几种?dr用数量关系如何来判断呢?点在圆内rOP点在圆上rOP点在圆外rOP(令令OP=d )导入新课导入新课知识准备问题1 如果我们把太阳看成一个圆,地平线看成一条直线,那你能根据直线和圆的公共点个数想象一下,直线和圆有几种位置关系吗?讲授新课讲授新课用定义判断直线与圆的位置关系一问题2 请同学在纸上画一条直
2、线l,把硬币的边缘看作圆,在纸上移动硬币,你能发现直线和圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个?l02直线与圆的位置关系 图形 公共点个数 公共点名称 直线名称2个交点1个切点切线0个相离相切相交位置关系公共点个数填一填: 直线和圆有唯一的公共点(即直线和圆相切)时,这条直线叫做圆的切线(如图直线l),这个唯一的公共点叫做切点(如图点A).AlO要点归纳1.直线与圆最多有两个公共点.2.若直线与圆相交,则直线上的点都在圆上. 3.若A是 O上一点,则直线AB与 O相切. 4.若C为 O外一点,则过点C的直线与 O相交或相离. 5.直线a 和 O有公共点,则直线a与 O
3、相交.判一判:问题1 同学们用直尺在圆上移动的过程中,除了发现公共点的个数发生了变化外,还发现有什么量也在改变?它与圆的半径有什么样的数量关系呢?相关知识: 点到直线的距离是指从直线外一点(A)到直线(l)的垂线段(OA)的长度.lAO用数量关系判断直线与圆的位置关系二问题2 怎样用d(圆心与直线的距离)来判别直线与圆的位置关系呢?Od合作探究直线和圆相交d rrdrdrd数形结合:数形结合:位置关系位置关系数量关系数量关系(用圆心O到直线的距离d与圆的半径r的关系来区分)ooo公共点公共点个数个数要点归纳1.已知圆的半径为6cm,设直线和圆心的距离为d :(3)若d=8cm ,则直线与圆_,
4、 直线与圆有_个公共点. (2)若d=6cm ,则直线与圆_, 直线与圆有_个公共点. (1)若d=4cm ,则直线与圆, 直线与圆有_个公共点. (3)若AB和 O相交,则 .2.已知 O的半径为5cm, 圆心O与直线AB的距离为d, 根据条件 填写d的范围: (1)若AB和 O相离, 则 ; (2)若AB和 O相切, 则 ;相交相切相离d 5cmd = 5cm0cmd r,因此 C和AB相离.BCA43Dd记住:斜边上的高等于两直角边的乘积除以斜边.(2)当r=2.4cm时,有d=r.因此 C和AB相切.BCA43Dd(3)当r=3cm时,有dr,因此, C和AB相交.BCA43DdABC
5、AD453 变式题变式题: : 1.RtABC,C=90AC=3cm,BC=4cm,以C为圆心画圆,当半径r为何值时,圆C与直线AB没有公共点?当0cmr2.4cm或r4cm时, C与线段AB没有公共点.2.RtABC,C=90,AC=3cm,BC=4cm,以C为圆心画圆,当半径r为何值时,圆C与线段AB有一个公共点?当半径r为何值时,圆C与线段AB有两个公共点?ABCAD453当r=2.4cm或3cmr4cm时, C与线段AB有一个公共点.当2.4cmr3cm 时, C与线段AB有两公共点.例2 如图,RtABC的斜边AB=10cm,A=30.(1) 以点C为圆心,当半径为多少时,AB与C相
6、切?(2) 以点C为圆心,半径r分别为4cm,5cm作两个圆,这两个圆与斜边AB分别有怎样的位置关系?ACB解:(1) 过点C作边AB上的高CD.DA=30,AB=10cm,15cm.2BCAB在RtBCD中,有5sin3cm.2CDBCB当半径为 时,AB与C相切.53cm2当堂练习当堂练习.O.O.O.O .O1.看图判断直线l与O的位置关系?(1)(2)(3)(4)(5) 相离 相交 相切 相交?注意:直线是可以无限延伸的 相交2直线和圆相交,圆的半径为r,且圆心到直线的距离为5,则有( )A. r 5 C. r = 5 D. r 53. O的最大弦长为8,若圆心O到直线l的距离为d=5
7、,则直线l与O .4. O的半径为5,直线l上的一点到圆心O的距离是5,则直线l与O的位置关系是( )A. 相交或相切 B. 相交或相离 C. 相切或相离 D. 上三种情况都有可能B相离A解析:过点A作AQMN于Q,连接AN,设半径为r,由垂径定理有MQNQ,所以AQ2,ANr,NQ4r,利用勾股定理可以求出NQ1.5,所以N点坐标为(1,2)故选A.5.如图,在平面直角坐标系中, A与y轴相切于原点O,平行于x轴的直线交 A于M、N两点若点M的坐标是(4,2),则点N的坐标为()A(1,2) B(1,2)C(1.5,2) D(1.5,2)A拓展提升:已知O的半径r=7cm,直线l1 / l2
8、,且l1与O相切,圆心O到l2的距离为9cm.求l1与l2的距离.ol1l2ABCl2解:(1) l2与l1在圆的同一侧: m=9-7=2 cm(2)l2与l1在圆的两侧: m=9+7=16 cm课堂小结课堂小结直线与圆的位置关系定义性质判定相离相切相交公共点的个数d与r的数量关系定 义 法性 质 法特别提醒:在图中没有d要先做出该垂线段相 离 : 0 个相 切 : 1 个相 交 : 2 个相 离 : d r相 切 : d = r相 交 : d r : 相 离d = r : : 相 切d r : 相 交27.2 与圆有关的位置关系九年级数学下(HS) 教学课件第1课时 切线的性质与判定导入新课
9、讲授新课当堂练习课堂小结3. 切线学习目标1.会判定一条直线是否是圆的切线并会过圆上一点作圆的切线.2.理解并掌握圆的切线的判定定理及性质定理.(重点)3.能运用圆的切线的判定定理和性质定理解决问题.(难点)导入新课导入新课情境引入转动雨伞时飞出的雨滴,用砂轮磨刀时擦出的火花,都是沿着什么方向飞出的?都是沿切线方向飞出的. 生活中常看到切线的实例,如何判断一条直线是否为切线呢?学完这节课,你就都会明白.ABC问题:已知圆O上一点A,怎样根据圆的切线定义过点A作圆O的切线?观察:(1) 圆心O到直线AB的距离和圆的半径有什么数量关系?(2)二者位置有什么关系?为什么?切线的判定定理一O经过半径的
10、外端且垂直于这条半径的直线是圆的切线.OA O的半径 OA于A O的切线ABC 切线的判定定理应用格式O要点归纳判一判:下列各直线是不是圆的切线?如果不是,请说明为什么?O.lAO.lABAOl(1)(2)(3)(1)不是,因为没有垂直.(2),(3)不是,因为没有经过半径的外端点A. 在此定理中,“经过半径的外端”和“垂直于这条半径”,两个条件缺一不可,否则就不是圆的切线.注意判断一条直线是一个圆的切线有三个方法:1.定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;2.数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;3.判定定理:经过半径的外端且垂直于这条半
11、径的直线是圆的切线.lAlOlrd要点归纳例1 如图,ABC=45,直线AB是O上的直径,点A,且AB=AC.求证:AC是O的切线. 解析:直线AC经过半径的一端,因此只要证OA垂直于AB即可.证明:AB=AC,ABC45,ACBABC45. BAC=180-ABC-ACB=90. AB是O的直径, AC是O的切线.AOCB例2 已知:直线AB经过 O上的点C,并且OA=OB,CA=CB.求证:直线AB是 O的切线.分析:由于AB过 O上的点C,所以连接OC,只要证明ABOC即可. 证明:连接OC(如图). OAOB,CACB, OC是等腰三角形OAB底边AB上的中线. ABOC. OC是 O
12、的半径, AB是 O的切线. 例3 如图,ABC 中,AB AC ,O 是BC的中点, O 与AB 相切于E.求证:AC 是 O 的切线BOCEA分析:根据切线的判定定理,要证明AC是 O的切线,只要证明由点O向AC所作的垂线段OF是 O的半径就可以了,而OE是 O的半径,因此只需要证明OF=OE.F证明:证明:连接OE ,OA, 过O 作OF AC. O 与AB 相切于E , OE AB.又ABC 中,AB AC ,O 是BC 的中点AO 平分BAC,FBOCEAOE OF.OE 是 O 半径,OF OE,OF AC.AC 是 O 的切线又又OE AB ,OFAC.如图,已知直线AB经过 O
13、上的点C,并且OAOB,CACB求证:直线AB是 O的切线.CBAO如图,OAOB=5,AB8, O的直径为6.求证:直线AB是 O的切线.CBAO对比思考作垂直连接方法归纳 (1) 有交点,连半径,证垂直; (2) 无交点,作垂直,证半径.证切线时辅助线的添加方法例1例2有切线时常用辅助线添加方法 (1) 见切点,连半径,得垂直.切线的其他重要结论 (1)经过圆心且垂直于切线的直线必经过切点;(2)经过切点且垂直于切线的直线必经过圆心.要点归纳思考:如图,如果直线l是 O 的切线,点A为切点,那么OA与l垂直吗?AlO直线l是 O 的切线,A是切点,直线l OA.切线的性质定理二 切线性质
14、圆的切线垂直于经过切点的半径 应用格式 小亮的理由是:直径AB与直线CD要么垂直,要么不垂直.(1)假设AB与CD不垂直,过点O作一条直径垂直于CD,垂足为M,(2)则OMOA,即圆心到直线CD的距离小于 O的半径,因此,CD与 O相交.这与已知条件“直线与 O相切”相矛盾.CDBOA(3)所以AB与CD垂直.M证法1:反证法. 性质定理的证明反证法的证明视频CDOA证法2:构造法.作出小 O的同心圆大 O,CD切小 O于点A,且A点为CD的中点,连接OA,根据垂径定理,则CD OA,即圆的切线垂直于经过切点的半径1.如图:在 O中,OA、OB为半径,直线MN与 O相切于点B,若ABN=30,
15、则AOB= .2.如图AB为 O的直径,D为AB延长线上一点,DC与 O相切于点C,DAC=30, 若 O的半径长1cm,则CD= cm.603练一练 利用切线的性质解题时,常需连接辅助线,一般连接圆心与切点,构造直角三角形,再利用直角三角形的相关性质解题.方法总结例4 如图,PA为 O的切线,A为切点直线PO与 O交于B、C两点,P30,连接AO、AB、AC.(1)求证:ACBAPO;(2)若AP ,求 O的半径3解析:(1)根据已知条件我们易得CAB=PAO=90,由P=30可得出AOP=60,则C=30=P,即AC=AP;这样就凑齐了角边角,可证得ACBAPO;OABPC(2)由已知条件
16、可得AOP为直角三角形,因此可以通过解直角三角形求出半径OA的长.(1)求证:ACBAPO;OABPC在ACB和APO中,BACOAP,ABAO,ABOAOB,ACBAPO.(1)证明:PA为 O的切线,A为切点,又P30,AOB60,又OAOB,AOB为等边三角形ABAO,ABO60.又BC为 O的直径,BAC90.OAP90.(2)若AP ,求 O的半径OABPC3AO1,CBOP2,OB1,即 O的半径为1.(2)解:在RtAOP中,P30,AP ,3当堂练习当堂练习 1.判断下列命题是否正确. 经过半径外端的直线是圆的切线. ( ) 垂直于半径的直线是圆的切线. ( ) 过直径的外端并
17、且垂直于这条直径的直线是圆的切线. ( ) 和圆只有一个公共点的直线是圆的切线. ( ) 过直径一端点且垂直于直径的直线是圆的切线. ( ) 3.如图,在O的内接四边形ABCD中,AB是直径,BCD=120,过D点的切线PD与直线AB交于点P,则ADP的度数为( )A40 B35 C30 D452.如图所示,A是O上一点,且AO=5,PO=13,AP=12,则PA与O的位置关系是 .APO第2题PO第3题DABC相切C4.如图, O切PB于点B,PB=4,PA=2,则 O的半径多少?OPBA解:连接OB,则OBP=90.设 O的半径为r,则OA=OB=r,OP=OA+PA=2+r. 在RtOB
18、P中,OB2+PB2=PO2,即r2+42=(2+r)2.解得 r=3,即 O的半径为3.证明:连接OP. AB=AC,B=C. OB=OP,B=OPB, OBP=C. OPAC. PEAC, PEOP. PE为 O的切线.5.如图,ABC中,AB=AC,以AB为直径的 O交边BC于P, PEAC于E. 求证:PE是 O的切线.6.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的 O与BC相切于点M.求证:CD与 O相切证明:连接OM,过点O作ONCD于点N, O与BC相切于点M,OMBC.又ONCD,O为正方形ABCD对角线AC上一点,OMON,CD与 O相切MN7.已知
19、:ABC内接于O,过点A作直线EF.(1)如图1,AB为直径,要使EF为O的切线,还需添加的条件是(只需写出两种情况): _ ; _ .(2)如图2,AB是非直径的弦,CAE=B,求证:EF是O的切线.BAEFCAE=BAFEOAFEOBCBC图1图2证明:连接AO并延长交O于D,连接CD,则AD为O的直径. D+ DAC=90 , D与B同对 , D= B,又 CAE= B, D= CAE, DAC+ EAC=90,EF是O的切线.ACAFEOBC图2D切 线 的判定方法定义法数量关系法判定定理1个公共点,则相切d=r,则相切经过圆的半径的外端且垂直于这条半径的直线是圆的切线.切 线 的性质
20、证切线时常用辅助线添加方法: 有公共点,连半径,证垂直;无公共点,作垂直,证半径.有1个公共点d = r性质定理圆的切线垂直于经过切点的半径有切线时常用辅助线添加方法: 见切线,连切点,得垂直.课堂小结课堂小结27.2 与圆有关的位置关系九年级数学下(HS) 教学课件第2课时 切线长定理及三角形的内切圆导入新课讲授新课当堂练习课堂小结3. 切线学习目标1.掌握切线长的定义及切线长定理.(重点)2.初步学会运用切线长定理进行计算与证明.(难点)导入新课导入新课情境引入同学们玩过空竹和悠悠球吗?在空竹和悠悠球的旋转的那一瞬间,你能从中抽象出什么样数学图形?讲授新课讲授新课切线长定理及应用一互动探究
21、问题1 上节课我们学习了过圆上一点作已知圆的切线(如左图所示),如果点P是圆外一点,又怎么作该圆的切线呢?过圆外的一点作圆的切线,可以作几条?POBAO.PA B P1.切线长的定义: 切线上一点到切点之间的线段的长叫作这点到圆的切线长AO切线是直线,不能度量.切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量2.切线长与切线的区别在哪里?知识要点问题2 PA为O的一条切线,沿着直线PO对折,设圆上与点A重合的点为B OB是O的一条半径吗? PB是O的切线吗?(利用图形轴对称性解释) PA、PB有何关系? APO和BPO有何关系?O.PABPO切线长定理: 过圆外一点作圆的两条
22、切线,两条切线长相等.圆心与这一点的连线平分两条切线的夹角.PA、PB分别切O于A、BPA = PBOPA=OPB几何语言: 切线长定理为证明线段相等、角相等提供了新的方法.注意知识要点O.P已知,如图PA、PB是O的两条切线,A、B为切点.求证:PA=PB,APO=BPO.证明:PA切O于点A, OAPA.同理可得OBPB.OA=OB,OP=OP,RtOAPRtOBP,PA=PB,APO=BPO.推理验证AB想一想:若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.OP垂直平分AB.证明:PA,PB是 O的切线,点A,B是切点 PA = PB ,OPA=OPB PAB
23、是等腰三角形,PM为顶角的平分线 OP垂直平分AB.O.PABM想一想:若延长PO交 O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.证明:PA,PB是 O的切线,点A,B是切点, PA = PB ,OPA=OPB. PC=PC. PCA PCB, AC=BC.CA=CBO.PABC典例精析例1 已知:如图,四边形ABCD的边AB、BC、CD、DA与 O分别相切与点E、F、G、H.求证:AB+CD=AD+BC.ABCDO证明:AB、BC、CD、DA与 O分别相切与点E、F、G、H,EFGH AE=AH,BE=BF,CG=CF,DG=DH. AE+BE+CG+DG=AH+BF+CF
24、+DH.AB+CD=AD+BC.例2 为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径,若三角板与圆相切且测得PA=5cm,求铁环的半径解析:欲求半径OP,取圆的圆心为O,连OA,OP,由切线性质知OPA为直角三角形,从而在RtOPA中由勾股定理易求得半径O在RtOPA中,PA5,POA30,OQ解:过O作OQAB于Q,设铁环的圆心为O,连接OP、OA.AP、AQ为 O的切线,AO为PAQ的平分线,即PAOQAO.又BAC60,PAOQAOBAC180,PAOQAO60.=5 3c
25、m.OP即铁环的半径为5 3cm.1.PA、PB是O的两条切线,A、B为切点,直线OP交O于点D、E,交AB于C.(1)写出图中所有的垂直关系;OAPA,OB PB,AB OP.(3)写出图中所有的全等三角形;AOP BOP, AOC BOC, ACP BCP.(4)写出图中所有的等腰三角形.ABP AOB(2)写出图中与OAC相等的角;OAC=OBC=APC=BPC.P练一练P 2.PA、PB是O的两条切线,A,B是切点,OA=3.(1)若AP=4,则OP= ;(2)若BPA=60 ,则OP= .56 3.如图,PA、PB是O的两条切线,点A、B是切点,在弧AB上任取一点C,过点C作O的切线
26、,分别交PA、PB于点D、E.已知PA=7,P=40.则 DOE= . PDE的周长是 ;14OPABCED70解析:连接OA、OB、OC、OD和OE.PA、PB是O的两条切线,点A、B是切点,PA=PB=7.PAO=PBO=90. AOB=360-PAO-PBO-P=140. 又DC、DA是O的两条切线,点C、A是切点,DC=DA.同理可得CE=CB.OPABCEDD,E是切线PA,PB上的点,DOC=DOA= AOC.12DOE=DOC+COE= (AOC+COB)=70.12COE=BOE= AOC.12SPDE=PD+DE+PE=PD+DC+CE+PE=PA+PB=14.切线长问题辅助
27、线添加方法:(1)分别连接圆心和切点;(2)连接两切点;(3)连接圆心和圆外一点.方法归纳 小明在一家木料厂上班,工作之余想对厂里的三角形废料进行加工:裁下一块圆形用料,怎样才能使裁下的圆的面积尽可能大呢?三角形的内切圆及作法二互动探究问题1 如果最大圆存在,它与三角形三边应有怎样的位置关系? OOOO最大的圆与三角形三边都相切三角形角平分线的这个性质,你还记得吗?问题2 如何求作一个圆,使它与已知三角形的三边都相切? (1) 如果半径为r的I与ABC的三边都相切,那么圆心I应满足什么条件?(2) 在ABC的内部,如何找到满足条件的圆心I呢? 圆心I到三角形三边的距离相等,都等于r.三角形三条
28、角平分线交于一点,这一点与三角形的三边距离相等.圆心I应是三角形的三条角平分线的交点.为什么呢?已知:ABC.求作:和ABC的各边都相切的圆.ABCOMND作法:1.作B和C的平分线BM和CN,交点为O.2.过点O作ODBC.垂足为D.3.以O为圆心,OD为半径作圆O.O就是所求的圆.做一做1.与三角形三边都相切的圆叫作三角形的内切圆.2.三角形内切圆的圆心叫做这个三角形的内心.3.这个三角形叫做这个圆的外切三角形.BACI I是ABC的内切圆,点I是ABC的内心,ABC是I的外切三角形.知识要点三角形的内心的性质三BACI问题1 如图,I是ABC的内切圆,那么线段OA,OB ,OC有什么特点
29、?互动探究线段OA,OB ,OC 分别是A,B,C的平分线.BACI问题2 如图,分别过点作AB、AC、BC的垂线,垂足分别为E、F,G,那么线段IE、IF、IG之间有什么关系?EFGIE=IF=IG知识要点u三角形内心的性质三角形内心的性质三角形的内心在三角形的角平分线上.三角形的内心到三角形的三边距离相等.BACIEFG IA,IB,IC是ABC的角平分线,IE=IF=IG.例3 如图,ABC中, B=43,C=61 ,点I是ABC的内心,求 BIC的度数.解:连接IB,IC.ABCI点I是ABC的内心,IB,IC分别是 B,C的平分线,在IBC中,180()BICIBCICB 1180(
30、)2BC 1180(4361 )2128 .例4 如图,一个木模的上部是圆柱,下部是底面为等边三角形的直三棱柱. 圆柱的下底面圆是直三棱柱上底面等边三角形的内切圆,已知直三棱柱的底面等边三角形的边长为3cm,求圆柱底面圆的半径.该木模可以抽象为几何如下几何图形.CABrOD解: 如图,设圆O切AB于点D,连接OA、OB、OD.圆O是ABC的内切圆,AO、BO是BAC、ABC的角平分线 ABC是等边三角形, OAB=OBA=30oODAB,AB=3cm,AD=BD= AB=1.5(cm)12OD=AD tan30o= (cm)32答:圆柱底面圆的半径为 cm.32例5 ABC的内切圆O与BC、C
31、A、AB分别相切于点D、E、F,且AB=13cm,BC=14cm,CA=9cm,求AF、BD、CE的长.想一想:图中你能找出哪些相等的线段?理由是什么?BACEDFO解: 设AF=xcm,则AE=xcm.CE=CD=AC-AE=9-x(cm), BF=BD=AB-AF=13-x(cm).由 BD+CD=BC,可得 (13-x)+(9-x)=14, AF=4(cm),BD=9(cm),CE=5(cm).方法小结:关键是熟练运用切线长定理,将相等线段转化集中到某条边上,从而建立方程.解得 x=4.ACEDFO比一比名称确定方法图形性质外心:三角形外接圆的圆心内心:三角形内切圆的圆心三角形三边中垂线
32、的交点1.OA=OB=OC2.外心不一定在三角形的内部三角形三条角平分线的交点1.到三边的距离相等;2.OA、OB、OC分别平分BAC、ABC、ACB3.内心在三角形内部ABOABCO1.求边长为6 cm的等边三角形的内切圆半径与外接圆半径.解:如图,由题意可知BC=6cm,ABC=60,ODBC,OB平分ABC.OBD=30,BD=3cm,OBD为直角三角形.tan303cm.ODBD2 3cm.cos30BDBD 内切圆半径外接圆半径练一练变式:求边长为a的等边三角形的内切圆半径r与外接圆半径R的比.sinOBD sin30 rR ODOB .12ABCODEFABCDEFO2.设ABC的
33、面积为S,周长为L, ABC内切圆的半径为r,则S,L与r之间存在怎样的数量关系?111222SAB OFAC OEBC ODggg11().22ABACBC rLrABCOcDEr3.如图,直角三角形的两直角边分别是a、b,斜边为c,则其内切圆的半径r为_(以含a、b、c的代数式表示r).2abcr解析:过点O分别作AC,BC,AB的垂线,垂足分别为D,E,F.F则AD=AC-DC=b-r,BF=BC-CE=a-r,因为AF=AD,BF=BE,AF+BF=c,所以a-r+b-r=c,所以.2abcr2.如图,已知点O是ABC 的内心,且ABC= 60 , ACB= 80 ,则BOC= . 1
34、.如图,PA、PB是O的两条切线,切点分别是A、B,如果AP=4, APB= 40 ,则APO= ,PB= . P第1题第2题当堂练习当堂练习20 4110 (3)若BIC=100 ,则A = 度.(2)若A=80 ,则BIC = 度.130203.如图,在ABC中,点I是内心, (1)若ABC=50, ACB=70,BIC=_.ABCI(4)试探索: A与BIC之间存在怎样的数量关系?120190.2BICA4.如图所示,已知在ABC中,B90,O是AB上一点,以O为圆心,OB为半径的圆与AB交于E,与AC相切于点D.求证:DEOC.方法一:证明:连接OD,AC切O点D,ODAC,ODC=B
35、=90.在RtOCD和RtOCB中, ODOB ,OCOC RtODCRtOBC(HL),DOC=BOC.OD=OE,ODE=OED,DOB=ODE+OED,BOC=OED,DEOC方法二:证明:连接BD,AC切O于点D,AC切O于点B,DC=BC,OC平分DCB.OCBD.BE为O的直径,DEBD.DEOC5.如图,ABC中,I是内心,A的平分线和ABC的外接圆相交于点D.求证:DIDB.证明:连接BI.I是ABC的内心,BAD=CAD,ABI=CBI,CBD=CAD,BAD=CBD,BID=BAD+ABI,IBD=CBI+CBD,BID=IBD,BD=ID切线长切 线 长定理作 用图形的轴
36、对称性原 理提供了证线段和角相等的新方法辅助线 分别连接圆心和切点; 连接两切点; 连接圆心和圆外一点.三角形内切圆运用切线长定理,将相等线段转化集中到某条边上,从而建立方程.有关概念内心概念及性质应 用课堂小结课堂小结27.3 圆中的计算问题第27章 圆导入新课讲授新课当堂练习课堂小结九年级数学上(HS) 教学课件第1课时 弧长和扇形面积学习目标1.理解弧长和扇形面积公式的探求过程.(难点)2.会利用弧长和扇形面积的计算公式进行计算.(重点)导入新课导入新课图片欣赏问题1 如图,在运动会的4100米比赛中,甲和乙分别在第1跑道和第2跑道,为什么他们的起跑线不在同一处?问题2 怎样来计算弯道的
37、“展直长度”?因为要保证这些弯道的“展直长度”是一样的.导入新课导入新课情境引入讲授新课讲授新课与弧长相关的计算一问题1 半径为R的圆,周长是多少?ORC=2 R问题2 下图中各圆心角所对的弧长分别是圆周长的几分之几?OR180OR90OR45ORn合作探究(1) 圆心角是180,占整个周角的 ,因此它所对的弧长是圆周长的_.180360(2) 圆心角是90,占整个周角的 ,因此它所对的弧长是圆周长的_.90360(3) 圆心角是45,占整个周角的 ,因此它所对的弧长是圆周长的_.45360(4) 圆心角是n,占整个周角的 ,因此它所对的弧长是圆周长的_.360n180360903604536
38、0360n 用弧长公式进行计算时,要注意公式中n的意义n表示1圆心角的倍数,它是不带单位的.注意算一算 已知弧所对的圆心角为60,半径是4,则弧长为_.4312360180nn RCRg知识要点u弧长公式弧长公式典例精析OA解:设半径OA绕轴心O逆时针 方向旋转的度数为n.解得 n90因此,滑轮旋转的角度约为90。15.7,180n R例1 一滑轮起重机装置(如图),滑轮的半径r=10cm,当重物上升15.7cm时,滑轮的一条半径OA绕轴心O逆时针方向旋转多少度(假设绳索与滑轮之间没有滑动, 取3.14)?例2 古希腊埃拉托塞尼曾给出一个估算地球周长(或子午周长)的简单方法.如图,点S和点A分
39、别表示埃及的塞伊尼和亚历山大两地,亚历山大在塞伊尼的北方,两地的经度大致相同,两地的实际距离为5 000希腊里(1 希腊里158.5 m).当太阳光线在塞伊尼直射时,同一时刻在亚历山大测量太阳光线偏离直射方向的角为.实际测得是7.2,由此估算出了地球的周长,你能进行计算吗?OASOAS解:太阳光线可看作平行的,圆心角AOS=7.2.136050,7.2CASoo设地球的周长为C1,则1C =5039625km.AS 答:地球的周长约为39625km.制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度l.(单位:mm,精确到1mm)解:由弧长公式,可得弧AB的长11
40、00 9005001570 (mm),180C 因此所要求的展直长度l=2700+1570=2970(mm). 答:管道的展直长度为2970mm 700mm700mmR=900mm(100 ACBDO练一练圆的一条弧和经过这条弧的端点的两条半径所围成的图形叫作扇形.如图,黄色部分是一个扇形,记作扇形OAB.半径半径OBA圆心角圆心角弧OBA扇形与扇形面积相关的计算二概念学习下列图形是扇形吗?判一判合作探究问题1 半径为r的圆,面积是多少?Or2S= r问题2 下图中各扇形面积分别是圆面积的几分之几,具体是多少呢?圆心角占圆心角占周角的比例周角的比例扇形面积扇形面积占占圆圆面积面积的比例的比例扇
41、形的扇形的面积面积21360180813604536045360180903609036014=r212pr214pr218Or180Or90Or45Orn360n360n2360nr扇形面积公式半径为r的圆中,圆心角为n的扇形的面积 公式中n的意义n表示1圆心角的倍数,它是不带单位的;公式要理解记忆(即按照上面推导过程记忆).注意2=360n rS扇形知识要点 _大小不变时,对应的扇形面积与 _ 有关, _ 越长,面积越大.圆心角半径半径圆的 不变时,扇形面积与 有关, 越大,面积越大.圆心角半径 圆心角 总结:扇形的面积与圆心角、半径有关。O ABDCEFO ABCD问题 扇形的面积与哪些
42、因素有关?问题:扇形的弧长公式与面积公式有联系吗? 想一想 扇形的面积公式与什么公式类似? 11180221802nrrnrSrlr扇形ABOO类比学习180n rl2=360n rS扇形例3 如图,圆心角为60的扇形的半径为10cm.求这个扇形的面积和周长.(精确到0.01cm2和0.01cm)OR60解:n=60,r=10cm,扇形的面积为=2 +180n rlr26010=360 50=3252.36(cm ).扇形的周长为2=180n rS6010=20+180 10=20+330.47(cm).1.已知半径为2cm的扇形,其弧长为 ,则这个扇形的面积S扇扇= 432.已知扇形的圆心角
43、为120,半径为2,则这个扇形的面积S扇= .24cm3 43 试一试例4 如图,点D在 O的直径AB的延长线上,点C在 O上,AC=CD,ACD=120(1)求证:CD是 O的切线;(2)若 O的半径为2,求图中阴影部分的面积(1)证明:连接OCAC=CD,ACD=120,A=D=30OA=OC,ACO=A=30OCD=180-A-D-ACO=90 即OCCD,CD是 O的切线(2) A=30,COB=2A=60BOC602.3603S扇形在RtOCD中,CDOCtan602 3.OCD1=OC CD=2 3.2SgOCDOCB2=S-S=2 3-.3S阴影扇形例5 如图,水平放置的圆柱形排
44、水管道的截面半径是0.6cm,其中水面高0.3cm,求截面上有水部分的面积.(精确到0.01cm)(1)O .BAC 讨论:(1)截面上有水部分的面积是指图上哪一部分?阴影部分.O.BACD(2)O.BACD(3)(2)水面高0.3 m是指哪一条线段的长?这条线段应该怎样画出来?线段DC.过点O作OD垂直符号于AB并长交圆O于C.(3)要求图中阴影部分面积,应该怎么办? 阴影部分面积=扇形OAB的面积- OAB的面积解:如图,连接OA,OB,过点O作弦AB的垂线,垂足为D,交AB于点C,连接AC. OC0.6, DC0.3, ODOC- DC0.3, ODDC.又 AD DC,AD是线段OC的
45、垂直平分线,ACAOOC.从而 AOD60, AOB=120.O.BACD(3)有水部分的面积:SS扇形OAB - SOAB2212010.6360210.120.6 3 0.320.22(m )AB ODOBACD(3)OO弓形的面积=扇形的面积三角形的面积 S弓形=S扇形-S三角形 S弓形=S扇形+S三角形知识要点u弓形的面积公式弓形的面积公式 当堂练习当堂练习7733847338 433CA. BC. D.1.已知弧所对的圆周角为90,半径是4,则弧长为 .2.如图,RtABC中,C=90, A=30,BC=2,O、H分别为AB、AC的中点,将ABC顺时针旋转120到A1BC1的位置,则
46、整个旋转过程中线段OH所扫过的面积为 ( )2ABCOHC1A1H1O13.如图,A、B、 C、 D两两不相交,且半径都是2cm,则图中阴影部分的面积是 .212 cmABCD解析:点A所经过的路线的长为三个半径为2,圆心角为120的扇形弧长与两个半径为 ,圆心角为90的扇形弧长之和,即 4.如图,RtABC的边BC位于直线l上,AC ,ACB90,A30.若RtABC由现在的位置向右无滑动地翻转,当点A第3次落在直线l上时,点A所经过的路线的长为_(结果用含的式子表示)3312029033243(43) .180180l (43)5.(例题变式题)如图、水平放置的圆柱形排水管道的截面半径是0
47、.6cm,其中水面高0.9cm,求截面上有水部分的面积.OABDCE22=24010.60.3 0.6 336020.240.09 30.91 cm.OABSS弓形扇形S解:6. 如图,一个边长为10cm的等边三角形模板ABC在水平桌面上绕顶点C按顺时针方向旋转到ABC的位置,求顶点A从开始到结束所经过的路程为多少.ABABC解 由图可知,由于ACB=60,则等边三角形木板绕点C按顺时针方向旋转了120,即ACA =120,这说明顶点A经过的路程长等于弧AA 的长.等边三角形ABC的边长为10cm,弧AA 所在圆的半径为10cm.l弧AA 1201020(cm).1803 答:顶点A从开始到结
48、束时所经过的路程为20cm.3课堂小结课堂小结弧长计算公式:1180n RC扇形定义公式2360n RS扇形112SC R扇形阴影部分面积求法:整体思想弓形公式S弓形=S扇形-S三角形 S弓形=S扇形+S三角形割补法27.3 圆中的计算问题第27章 圆导入新课讲授新课当堂练习课堂小结九年级数学下(HS) 教学课件第2课时 圆锥的侧面积和全面积学习目标1.体会圆锥侧面积的探索过程.(重点)2.会求圆锥的侧面积,并能解决一些简单的实际问题.(重点、难点)导入新课导入新课图片欣赏讲授新课讲授新课与圆锥的侧面展开图相关的计算一互动探究顶点母线底面半径侧面高高u圆锥的形成圆锥的高 母线SAOBr我们把连
49、接圆锥的顶点S和底面圆上任一点的连线SA,SB 等叫做圆锥的母线u圆锥的母线圆锥有无数条母线,它们都相等u圆锥的高从圆锥的顶点到圆锥底面圆心之间的距离是圆锥的高知识要点重要数量关系由勾股定理得:如果用r表示圆锥底面的半径, h表示圆锥的高线长, l表示圆锥的母线长,那么r、h、l 之间数量关系是:r2+h2= 2lhlOr知识要点根据下列条件求值(其中r、h、l 分别是圆锥的底面半径、高线、母线长) (1)l = 2,r=1 则 h=_. (2) h =3, r=4 则 l =_. (3) l = 10, h = 8 则r=_.356Olhr填一填lor圆锥的侧面展开图是什么图形?扇形圆锥的侧
50、面展开图是扇形想一想问题:1.沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形,这个扇形的弧长与底面的周长有什么关系?2.圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?相等母线圆锥侧面展开图的面积lo侧面展开图lr2Cr其侧面展开图扇形的半径=母线的长l侧面展开图扇形的弧长=底面周长2 r公式推导lR21S扇形u圆锥的侧面积计算公式lr 221S侧 例1 一个圆锥的侧面展开图是一个圆心角为120、弧长为20 的扇形,试求该圆锥底面的半径及它的母线的长.解:设该圆锥的底面的半径为r,母线长为a.可得r=10.可得a=30.220r又12020180a典例精析 例2 如图,圆锥形