1、12022-4-2922022-4-29 思考32022-4-29 做一做画一个三角形,使它的一个内角为画一个三角形,使它的一个内角为4545 , ,夹这个角夹这个角的一条边为厘米,另一条的一条边为厘米,另一条边长为厘米边长为厘米. .步骤:步骤:1.画一线段画一线段AB,使它等于使它等于4cm 2.画画 MAB= 4545 3. 3.在射线在射线AMAM上截取上截取AC=3cm AC=3cm 4. 4.连结连结BC. BC. ABC ABC就是所求的三角形就是所求的三角形温馨提示42022-4-29把你画的三角形与同桌画的三角形进行比较,你们把你画的三角形与同桌画的三角形进行比较,你们的三角
2、形全等吗?的三角形全等吗?动画演示动画演示如果两个三角形有如果两个三角形有两边两边及其及其夹角夹角分别对应相等,那么分别对应相等,那么这两个三角形全等简记为这两个三角形全等简记为SASSAS(或(或边角边边角边)三角形全等的判定方法(三角形全等的判定方法(1 1):):几何语言:几何语言:在在ABC与与ABC中中ABCABCAB=ABB=BBC=BCABC ABC(SAS)探究新知探究新知这是一个这是一个公理。公理。52022-4-29例题讲解例题讲解例例1:如图,在:如图,在ABC中,中,ABAC,AD平分平分BAC,求证:,求证:ABD ACDABCD62022-4-29例题推广例题推广A
3、BCD72022-4-29例题拓展例题拓展2、如图,在、如图,在ABC中,中,ABAC,AD平分平分BAC,求证:,求证: BD=CDABCD证明证明: : BDCD(全等三角形的对应边相等)(全等三角形的对应边相等)ADBC ADB ADC (全等三角形的对应角相等)(全等三角形的对应角相等)又又 ADB+ ADC180 ADB ADC 90 ADBCBADCAD ADADABD ACD(SAS)AD平分平分BAC在在ABD与与ACD中中ABACBADCAD82022-4-29题中的两个三角形是否全等题中的两个三角形是否全等?ABCABCEFD EFD 根据根据“SAS”SAS”92022-
4、4-29 如图,在如图,在AECAEC和和ADBADB中,已知中,已知AE=ADAE=AD,AC=ABAC=AB。请说明。请说明AEC AEC ADBADB的理由。的理由。 AE =_( AE =_(已知已知) )_= _( _= _( 公共角公共角) )_= AB ( )_= AB ( ) _( )AEBDCADACSAS解:解:在在AEC和和ADB中中AA已知已知AECADB例例2 2102022-4-29已知:如图,已知:如图, AB=CB AB=CB , ABD= ABD= CBD , CBD , ABD ABD 和和 CBD CBD 全等吗?全等吗?分析分析: : ABD ABD C
5、BD CBD边边: :角角: :边边: :AB=CB(AB=CB(已知已知) )ABD= CBD(ABD= CBD(已知已知) )?AB BC CD D(SAS)(SAS)例例3:112022-4-29已知:如图,已知:如图, AB=CB AB=CB , ABD= ABD= CBD , CBD , ABD ABD 和和 CBD CBD 全等吗?全等吗?解解: : ABD ABD CBD (SAS) CBD (SAS)AB=CBAB=CBABD= CBDABD= CBDAB BC CD D例:例:在在 ABD ABD 和和 CBDCBD中中BD=BD122022-4-29: 如图,已知如图,已知
6、AB和和CD相交与相交与O, OA=OB, OC=OD.说明说明 OAD与与 OBC全等的理由全等的理由OA = OB(已知)已知)1 =2(对顶角相等)(对顶角相等)OD = OC (已知)(已知)OAD OBC (S.A.S) 解:在解:在OAD 和和OBC中中CBADO21巩固练习巩固练习132022-4-29巩固练习巩固练习2.点点M是等腰梯形是等腰梯形ABCD底边底边AB的中点,求证的中点,求证AMD BMC. 点点M是等腰梯形是等腰梯形ABCD底边底边AB的中点的中点AD=BC (等腰梯形的两腰相等)(等腰梯形的两腰相等) AB(等腰梯形的同一底边的两内角相等)(等腰梯形的同一底边
7、的两内角相等) AM=BM (线段中点的定义)(线段中点的定义)在在ADM和和BCM中中 ADBC (已证已证) AB (已证已证) AMBM (已证已证)AMD BMC (S.A.S)142022-4-29巩固练习巩固练习2.点点M是等腰梯形是等腰梯形ABCD底边底边AB的中点,求证的中点,求证DM=CM. 点点M是等腰梯形是等腰梯形ABCD底边底边AB的中点的中点AD=BC (等腰梯形的两腰相等)(等腰梯形的两腰相等) AB(等腰梯形的同一底边的两内角相等)(等腰梯形的同一底边的两内角相等) AM=BM (线段中点的定义)(线段中点的定义)在在ADM和和BCM中中 ADBC (已证已证)
8、AB (已证已证) AMBM (已证已证)AMD BMC (S.A.S)152022-4-29巩固练习巩固练习2.点点M是等腰梯形是等腰梯形ABCD底边底边AB的中点,求证的中点,求证MDCMCD. 点点M是等腰梯形是等腰梯形ABCD底边底边AB的中点的中点AD=BC (等腰梯形的两腰相等)(等腰梯形的两腰相等) AB(等腰梯形的同一底边的两内角相等)(等腰梯形的同一底边的两内角相等) AM=BM (线段中点的定义)(线段中点的定义)在在ADM和和BCM中中 ADBC (已证已证) AB (已证已证) AMBM (已证已证)AMD BMC (S.A.S)162022-4-29172022-4-
9、29 某校八年级一班学生到野外活动,为测量某校八年级一班学生到野外活动,为测量一池塘两端一池塘两端A、B的距离。设计了如下方案:的距离。设计了如下方案:如图,先在平地上取一个可直接到达如图,先在平地上取一个可直接到达A、B的点的点C,再连结,再连结AC、BC并分别延长并分别延长AC至至E,使使DC=BC,EC=AC,最后测得,最后测得DE的距离即的距离即为为AB的长的长.你认为这种方法是否可行?你认为这种方法是否可行?CAEDB实际应用实际应用182022-4-29 以以2.5cm2.5cm,3.5cm3.5cm为三角形的两边,为三角形的两边,长度为长度为2.5cm2.5cm的边所对的角为的边
10、所对的角为4040 ,情况又怎样?情况又怎样?ABCDEF2.5cm3.5cm40403.5cm2.5cm结论:结论:两边及其一边的对角相等,两两边及其一边的对角相等,两个三角形个三角形不一定不一定全等全等192022-4-29“如果两个三角形二条边和一个角对应相等如果两个三角形二条边和一个角对应相等,那么这两个三角形全等,那么这两个三角形全等.”.”这个命题是真命这个命题是真命题吗?你能举个反例说明吗?题吗?你能举个反例说明吗?如图如图ABCABC与与ABDABD中,中,AB=ABAB=AB,AC=ADAC=AD, B=BB=B它们全等吗?它们全等吗?B BA AC CD D注注:这个角一定要是这两边所夹的角这个角一定要是这两边所夹的角202022-4-29课堂小结课堂小结今天你学到了什么今天你学到了什么?1 1、今天我们学习了哪种方法判定两个三角形全等?今天我们学习了哪种方法判定两个三角形全等?通过证明三角形全等可以证明两条线段相等通过证明三角形全等可以证明两条线段相等等、两个角相等。等、两个角相等。答:答:SAS( (边角边边角边) )(角夹在两条边的中间,形成两边夹一角)(角夹在两条边的中间,形成两边夹一角) 2 2、 “边边角边边角”能不能判定两个三角形全等?能不能判定两个三角形全等?答:不能答:不能212022-4-29