1、2021年贵州高考理科数学真题1.设集合M=x|0x4,N=x|13x5,则MN=A. x|0x13B. x|13x4C. x|4x5D. x|0x52.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间3.已知(1-i)2z=3+2i,则z=A.-1-3
2、2iB. -1+32iC. -32+iD. -32-i4.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记数法的数据V满足L=5+lgV。已知某同学视力的五分记录法的数据为4.9,则其视力的小数记数法的数据约为(10101.259)A.1.5 B.1.2 C.0.8 D.0.65.已知F1,F2是双曲线C的两个焦点,P为C上一点,且F1PF2=60,|PF1|=3|PF2|,则C的离心率为A.72B. 132C.7D.136.在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A-EFG后,所得
3、多面体的三视图中,正试图如右图所示,则相应的侧视图是A. B. C. D. 7.等比数列an的公比为q,前n项和为Sn,设甲:q0,乙:Sn是递増数列,则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件8.2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一.右图是三角高程测量法的一个示意图,现有以A,B, C三点,且A,B,C在同一水平而上的投影A,B,C满足ACB=45,ABC=60.由c点测得B点的仰角为15,曲,BB与CC的差为10
4、0 :由B点测得A点的仰角为45,则A,C两点到水平面ABC的高度差AA-CC约为(31.732)A.346 B.373 C. 446 D.4739.若(0,2),tan2=cos2-sin,则tan=A.1515 B. 55 C. 53 D. 15310.将4个1和2个0随机排成一行,则2个0 不相邻的概率为A.13 B. 25 C. 23 D. 4511.已知A,B,C是半径为1的求O的球面上的三个点,且ACBC,AC=BC=1,则三棱锥O-ABC的体积为A.212 B. 312 C. 24 D. 3412.设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x1,2
5、时,fx=ax2+b.若f0+f3=6,则f92=A.-94 B.-32 C. 74 D. 52二、填空题:本题共4小题,每小题5分,共20分。13.曲线y=2x-1x+2在点(-1,-3)处的切线方程为_。14.已知向量a=(3,1),b=(1,0),c=a+kb,若ac,则k=_。15.已知F1,F2为椭圆C:x216+y24=1的两个焦点,P,Q为C上关于坐标原点堆成的两点,且PQ=F1F2,则四边形PF1QF2的面积为_。16.已知函数fx=2cosx+的部分图像如图所示,则满足条件(fx-f-74)(fx-f43)0的最小正整数x为_。三、解答題:共70分。解答应写出文字说明,证明过
6、程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。 17.(12 分)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异? 附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d) 18.(12 分)已知数列an的各项均为正数,记Sn为an的前n项和,从下面中选取两个作为条件,证明另外一个成立.
7、 数列an是等差数列:数列Sn是等差数列;a2=3a1注:若选择不同的组合分别解答,则按第一个解答计分.19.(12分)已知直三棱柱ABC-A1B1C1.中,侧面AA1B1B为正方形, AB= BC = 2, E, F分别为AC和CC1的中点,D为棱A1B1上的点,BF丄A1B1.(1) 证明:BFDE; 当为B1D何值时,面BB1C1C与面DFE所成的二面角的正弦值最小? 20.(12分)抛物线C的顶点为坐标原点O,焦点在x轴上,直线L:x = 1交C于P,Q两点, 且OP丄OQ.已知点M(2,0),且M与L相切,(1) 求C , M的方程;(2) 设A1,A2,A3,是C上的三个点,直线A
8、1 A2, A1 A3均与 M相切,判断A2A3与M的位置关系,并说明理由.21.(12 分)己知a0且a1,函数f(x)=xaax(x0),(1)当a=2时,求f(x)的单调区间;(2)若曲线y= f(x)与直线y=1有且仅有两个交点,求a的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.选修4一4:坐标系与参数方程(10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为=22cos.(1)将C的极坐标方程化为直角坐标方程;(2)设点A的直角坐标为(1,0),M为C上的动点,点P满足AP = 2AM,写出 P的轨迹C1的参数方程,并判断C与C1是否有公共点.23.选修4一5:不等式选讲(10分)已知函数f(x)=|x-2|, g(x) =|2x + 3|-|2x-1|.(1)画出f(x)和y=g(x)的图像;(2)若f(x+a)g(x),求a的取值范围.