第15章-对策论-(管理运筹学-第三版-课件-.ppt

上传人(卖家):三亚风情 文档编号:2656697 上传时间:2022-05-15 格式:PPT 页数:40 大小:242KB
下载 相关 举报
第15章-对策论-(管理运筹学-第三版-课件-.ppt_第1页
第1页 / 共40页
第15章-对策论-(管理运筹学-第三版-课件-.ppt_第2页
第2页 / 共40页
第15章-对策论-(管理运筹学-第三版-课件-.ppt_第3页
第3页 / 共40页
第15章-对策论-(管理运筹学-第三版-课件-.ppt_第4页
第4页 / 共40页
第15章-对策论-(管理运筹学-第三版-课件-.ppt_第5页
第5页 / 共40页
点击查看更多>>
资源描述

1、管管 理理 运运 筹筹 学学1第十五章 对策论 由“齐王赛马”引入管管 理理 运运 筹筹 学学21 1对策论的基本概念对策模型的三个基本要素:对策模型的三个基本要素:1.1.局中人局中人:参与对抗的各方;:参与对抗的各方;2.2.策略集:局中人选择对付其它局中人的行动方案策略集:局中人选择对付其它局中人的行动方案称为称为策略策略;某局中人的所有可能策略全体称为;某局中人的所有可能策略全体称为策策略集略集;3.3.一局势对策的益损值:局中人各自使用一个对策一局势对策的益损值:局中人各自使用一个对策就形成了就形成了一个局势一个局势,一个局势决定了各局中人的,一个局势决定了各局中人的对策结果(量化)

2、称为该局势对策的对策结果(量化)称为该局势对策的益损值益损值。管管 理理 运运 筹筹 学学3“齐王赛马齐王赛马”齐王在各局势中的益损值表(单位:千金)齐王在各局势中的益损值表(单位:千金)1 1对策论的基本概念管管 理理 运运 筹筹 学学4其中:齐王的策略集其中:齐王的策略集: : S1= 1, 2, 3, 4, 5, 6 , 田忌的策略集:田忌的策略集:S2= 1, 2, 3, 4, 5, 6 。下面矩阵称齐王的下面矩阵称齐王的赢得矩阵赢得矩阵: 3 1 1 1 -1 1 1 3 1 1 1 -1 A= 1 -1 3 1 1 1 -1 1 1 3 1 1 1 1 1 -1 3 1 1 1 -

3、1 1 1 3 1 1对策论的基本概念管管 理理 运运 筹筹 学学5二人有限零和对策二人有限零和对策(又称(又称矩阵对策矩阵对策):): 局中人为局中人为2 2;每个局中人的策略集的策略数目都;每个局中人的策略集的策略数目都是有限的;每一局势的对策均有确定的损益值,并是有限的;每一局势的对策均有确定的损益值,并且对同一局势的两个局中人的益损值之和为零。且对同一局势的两个局中人的益损值之和为零。 通常将矩阵对策记为通常将矩阵对策记为: : G = S1, S2, A S1:甲的策略集;:甲的策略集; S2:乙的策略集;:乙的策略集;A:甲的赢得矩阵。甲的赢得矩阵。 “齐王赛马齐王赛马”是一个矩阵

4、策略。是一个矩阵策略。1 1对策论的基本概念管管 理理 运运 筹筹 学学6在甲方的赢得矩阵中:在甲方的赢得矩阵中:A=aijmni 行代表甲方策略行代表甲方策略 i=1, 2, , m;j 行代表乙方策略行代表乙方策略 j=1, 2, , n;aij 代表甲方取策略代表甲方取策略 i,乙方取策略乙方取策略 j,这一局势下甲方的这一局势下甲方的益损值。此时乙方的益损值为益损值。此时乙方的益损值为 - -aij(零和性质)。(零和性质)。 在考虑各方采用的策略时,必须注意一个前提,就是双在考虑各方采用的策略时,必须注意一个前提,就是双方都是理智的,即双方都是从各自可能出现的最不利的情形方都是理智的

5、,即双方都是从各自可能出现的最不利的情形选择一种最为有利的情况作为决策的依据。选择一种最为有利的情况作为决策的依据。2 2 矩阵对策的最优纯策略矩阵对策的最优纯策略2 2矩阵对策的最优纯策略矩阵对策的最优纯策略管管 理理 运运 筹筹 学学7 例:甲乙乒乓球队进行团体对抗赛,每队由三名球员组成,双例:甲乙乒乓球队进行团体对抗赛,每队由三名球员组成,双方都可排成三种不同的阵容,每一种阵容可以看作一种策略,双方方都可排成三种不同的阵容,每一种阵容可以看作一种策略,双方各选一种策略参赛。比赛共赛三局,规定每局胜者得各选一种策略参赛。比赛共赛三局,规定每局胜者得1 1分,输者得分,输者得- -1 1分,

6、可知三赛三胜得分,可知三赛三胜得3 3分,三赛二胜得分,三赛二胜得1 1分,三赛一胜得分,三赛一胜得-1-1分,三分,三赛三负得赛三负得-3-3分。甲队的策略集为分。甲队的策略集为S S1 1= 1 1, 2 2, 3 3 ,乙队的策略集,乙队的策略集为为S S2 2= 1 1, 2 2, 3 3 。根据以往比赛的资料,有甲队的赢得矩阵为。根据以往比赛的资料,有甲队的赢得矩阵为A A,如下所示,如下所示, 请问这次比赛各队采用哪种阵容上场最为稳妥请问这次比赛各队采用哪种阵容上场最为稳妥? ?313311111A2 2矩阵对策的最优纯策略矩阵对策的最优纯策略管管 理理 运运 筹筹 学学8矩阵矩阵

7、A A中每行的最小元素分别为中每行的最小元素分别为1 1,-3-3,-1-1。 在这些最少赢得中最好的结果是在这些最少赢得中最好的结果是1 1,故甲队会采取策略,故甲队会采取策略 1 1,无论对手,无论对手采取何策略,甲队至少得采取何策略,甲队至少得1 1分。对于乙队,分。对于乙队, 1 1, 2 2, 3 3 可能带来的最少可能带来的最少赢得,即赢得,即A A中每列的最大元素,分别为中每列的最大元素,分别为3 3,1 1,3 3。乙队会采取。乙队会采取 2 2策略,确保策略,确保甲队不会超过甲队不会超过1 1分。分。 1 1和和 2 2分别称为局中人甲队、乙队的最优策略。由于双方必然选择这分

8、别称为局中人甲队、乙队的最优策略。由于双方必然选择这一种策略,所以,这种策略又称为最优纯策略。一种策略,所以,这种策略又称为最优纯策略。 这种最优纯策略只有当赢得矩阵这种最优纯策略只有当赢得矩阵A=A=(a aijij)中等式)中等式 成立时,双方才有最优纯策略,并把(成立时,双方才有最优纯策略,并把( 1 1, , 2 2)称为对策)称为对策G G在纯策略下的解,在纯策略下的解,又称(又称( 1 1, , 2 2)为对策)为对策G G的鞍点。把其值的鞍点。把其值V V称之为对策称之为对策G=SG=S1 1,S S2 2,AA的值。的值。ijijijjiaamaxminminmax2 2矩阵对

9、策的最优纯策略矩阵对策的最优纯策略管管 理理 运运 筹筹 学学9 例例 某单位采购员在秋天决定冬季取暖用煤的储量问题,已知某单位采购员在秋天决定冬季取暖用煤的储量问题,已知在正常的冬季气温条件下要消耗在正常的冬季气温条件下要消耗1515吨煤,在较暖和较冷的天气下要吨煤,在较暖和较冷的天气下要消耗消耗1010吨和吨和2020吨。假定冬天的煤价随天气寒冷程度而有所变化,在吨。假定冬天的煤价随天气寒冷程度而有所变化,在较暖和、正常、较冷的气候条件下每吨煤价分别为较暖和、正常、较冷的气候条件下每吨煤价分别为1010元、元、1515元、元、2020元。又设冬季时煤炭价格为每吨元。又设冬季时煤炭价格为每吨

10、1010元。在没有关于当年冬季准确的元。在没有关于当年冬季准确的气象预报的条件下,秋天储煤多少吨能使得单位的支出最少?气象预报的条件下,秋天储煤多少吨能使得单位的支出最少? 解:局中人解:局中人I I为采购员,局中人为采购员,局中人IIII为大自然,采购员有三个策为大自然,采购员有三个策略,买略,买1010吨、吨、1515吨、吨、2020吨。分别记为吨。分别记为 1 1, 2 2, 3 3。大自然也有三个。大自然也有三个策略:暖、正常、冷,分别记为策略:暖、正常、冷,分别记为 1 1, 2 2, 3 3。2 2矩阵对策的最优纯策略矩阵对策的最优纯策略管管 理理 运运 筹筹 学学10赢得矩阵如下

11、:赢得矩阵如下:在此表上计算,有在此表上计算,有 得得故(故( 3 3, 3 3)为对策)为对策G G的解,的解,V VG G=-200=-200。 1 1 2 2 3 3 1 1(10(10吨)吨)-100-175-300 2 2(15(15吨)吨)-150-150-250 3 3(20(20吨)吨)-200-200-200 1 1 2 2 3 3minmin 1 1(10(10吨)吨)-100-175-300-300 2 2(15(15吨)吨)-150-150-250-250 3 3(20(20吨)吨)-200-200-200-200*maxmax-100-150-200*200maxmi

12、nminmax32aaaijijijji2 2矩阵对策的最优纯策略矩阵对策的最优纯策略管管 理理 运运 筹筹 学学11 设矩阵对策设矩阵对策 G = S1, S2, A 。当当 max min aij min max aij i j j i时,不存在最优纯策略。时,不存在最优纯策略。 例:设一个赢得矩阵如下例:设一个赢得矩阵如下: : min min 5 9 5 5 9 5 A = max 6 = max 6 策略策略 2 8 6 6 8 6 6 i i max 8 9 max 8 9 min 8 min 8 策略策略 1 j j3 3矩阵对策的混合策略矩阵对策的混合策略管管 理理 运运 筹筹

13、 学学12 当甲取当甲取策略策略 2 2 ,乙取,乙取策略策略 1 1时,甲实际赢得时,甲实际赢得8比预期的多比预期的多2 2,乙当然不满意。考虑到甲可能取乙当然不满意。考虑到甲可能取策略策略 2 2这一点,乙采取策略这一点,乙采取策略 2 2。若。若甲也分析到甲也分析到乙可能采取策略乙可能采取策略 2 2这一点,取策略这一点,取策略 1 1,则赢得更多为则赢得更多为9 9 。此时,对两个局中人甲、乙来说,没有一个双方均可接受。此时,对两个局中人甲、乙来说,没有一个双方均可接受的平衡局势,其主要原因是甲和乙没有执行上述原则的共同基础,的平衡局势,其主要原因是甲和乙没有执行上述原则的共同基础,即

14、即 max min aij min max aij 。 i j j i 一个自然的想法:对甲(乙)给出一个选取不同策略的概率分一个自然的想法:对甲(乙)给出一个选取不同策略的概率分布,以使甲(乙)在各种情况下的平均赢得(损失)最多(最少)布,以使甲(乙)在各种情况下的平均赢得(损失)最多(最少)-即混合策略。即混合策略。3 3矩阵对策的混合策略矩阵对策的混合策略管管 理理 运运 筹筹 学学13 求解求解混合策略的混合策略的问题有问题有图解法、迭代法、线性方程法和线性规图解法、迭代法、线性方程法和线性规划法等,我们这里只介绍划法等,我们这里只介绍线性规划法线性规划法,其他方法略。,其他方法略。

15、例:设甲使用策略例:设甲使用策略 1 1的概率为的概率为X1 1,使用策略,使用策略 2 2的概率为的概率为X2 ,并设在最坏的情况下,甲赢得的平均值为并设在最坏的情况下,甲赢得的平均值为V(未知)。(未知)。 5 9 A= STEP 1 8 6 1) 1) X1+X2=1 X1, X2 0 3 3矩阵对策的混合策略矩阵对策的混合策略管管 理理 运运 筹筹 学学142)2)无论乙取何策略,甲的平均赢得应不少于无论乙取何策略,甲的平均赢得应不少于V:V:对乙取对乙取 1 1: 5X5X1 1+ 8X+ 8X2 2 V V对乙取对乙取 2 2: 9X9X1 1+ 6X+ 6X2 2 V V注意注意

16、 V0,V0,因为因为A A各元素为正。各元素为正。STEP 2 STEP 2 作变换:作变换: X X1 1= X= X1 1/V ; X/V ; X2 2= X= X2 2/V/V得到上述关系式变为:得到上述关系式变为: X X1 1+ X+ X2 2=1/V (V=1/V (V愈大愈好)待定愈大愈好)待定 5X5X1 1+ 8X+ 8X2 2 1 1 9X 9X1 1+ 6X+ 6X2 2 1 1 X X1 1, X, X2 2 0 03 3矩阵对策的混合策略矩阵对策的混合策略管管 理理 运运 筹筹 学学15建立线性模型:建立线性模型: min Xmin X1 1+X+X2 2 s.t.

17、 5Xs.t. 5X1 1+8X+8X2 2 1 1 X X1 1= 1/21= 1/21 9 9X X1 1+6X+6X2 2 1 1 X X2 2= 2/21= 2/21 X X1 1, X, X2 2 0 1/V= 0 1/V= X X1 1+X+X2 2=1/7=1/7 所以,所以,V=7 V=7 返回原问题:返回原问题: X X1 1= = X X1 1V= 1/3V= 1/3 X X2 2= = X X2 2V= 2/3V= 2/3于是甲的最优混合策略为:于是甲的最优混合策略为:以以1/31/3的概率选的概率选 1 1, 以以2/32/3的概率选的概率选 2 2,最优值,最优值V=

18、7V=7。3 3矩阵对策的混合策略矩阵对策的混合策略管管 理理 运运 筹筹 学学16 同样可求乙的最优混合策略:同样可求乙的最优混合策略:设乙使用策略设乙使用策略 1 1的概率为的概率为Y Y1 1 Y Y1 1+Y+Y2 2=1=1设乙使用策略设乙使用策略 2 2的概率为的概率为Y Y2 2 Y Y1 1,Y,Y2 2 0 0 设在最坏的情况下,甲赢得的平均值为设在最坏的情况下,甲赢得的平均值为V V。这也是乙损失的平均。这也是乙损失的平均值,越小越好。值,越小越好。 作变换:作变换: Y Y1 1= Y= Y1 1/V /V , Y Y2 2= Y= Y2 2/V/V 建立线性模型:建立线

19、性模型: max Ymax Y1 1+Y+Y2 2 s.t. 5Ys.t. 5Y1 1+9Y+9Y2 2 1 1 Y Y1 1= 1/14= 1/14 8 8Y Y1 1+6Y+6Y2 2 1 1 Y Y2 2= 1/14= 1/14 Y Y1 1, Y, Y2 2 0 1/V= 0 1/V= Y Y1 1+Y+Y2 2=1/7=1/7 所以,所以,V=7 V=7 3 3矩阵对策的混合策略矩阵对策的混合策略管管 理理 运运 筹筹 学学17返回原问题:返回原问题: Y1= Y1V = 1/2 Y2= Y2V = 1/2于是乙的最优混合策略为:于是乙的最优混合策略为:以以 的概率选的概率选 1 1

20、;以以 的概率选的概率选 2 2 ,最优值,最优值 V=7。 当赢得矩阵中有非正元素时,当赢得矩阵中有非正元素时,V 0 的条件不一定成立,可以的条件不一定成立,可以作下列变换:作下列变换: 选一正数选一正数 k,令矩阵中每一元素加上,令矩阵中每一元素加上 k 得到新的正得到新的正矩阵矩阵AA,其对应的矩阵对策,其对应的矩阵对策G= SG= S1 1, S, S2 2, A , A 与与 G = SG = S1 1, S, S2 2, A , A 解相同,但解相同,但VG = VG k。3 3矩阵对策的混合策略矩阵对策的混合策略管管 理理 运运 筹筹 学学18例例:求解:求解“齐王赛马齐王赛马

21、”问题。问题。已知齐王的赢得矩阵已知齐王的赢得矩阵A A求得求得故不存在纯策略问题下的解,可求其混合策略。故不存在纯策略问题下的解,可求其混合策略。A A中有负元素,可以取中有负元素,可以取k=2,k=2,在在A A的每个元素上加的每个元素上加2 2得到得到A A如下:如下:311111131111113111111311111131111113A3maxmin1minmaxijijijjiaa533133351333335331333513133353313335A3 3矩阵对策的混合策略矩阵对策的混合策略管管 理理 运运 筹筹 学学19 建立对建立对G G=S=S1 1,S S2 2,A

22、A 中求甲方最佳策略的线性规划如下:中求甲方最佳策略的线性规划如下: Min xMin x1 1+x+x2 2+x+x3 3+x+x4 4+x+x5 5+x+x6 6 约束条件:约束条件: 5x5x1 1+3x+3x2 2+3x+3x3 3+x+x4 4+3x+3x5 5+3x+3x6 6 11 3x 3x1 1+5x+5x2 2+x+x3 3+3x+3x4 4+3x+3x5 5+3x+3x6 6 11 3x 3x1 1+3x+3x2 2+5x+5x3 3+3x+3x4 4+3x+3x5 5+x+x6 6 11 3x 3x1 1+3x+3x2 2+3x+3x3 3+5x+5x4 4+x+x5

23、5+3x+3x6 6 11 x x1 1+3x+3x2 2+3x+3x3 3+3x+3x4 4+5x+5x5 5+3x+3x6 6 11 3x 3x1 1+x+x2 2+3x+3x3 3+3x+3x4 4+3x+3x5 5+5x+5x6 6 11 x xi i 0,i=1,2, 0,i=1,2,6,6 可解得解为:可解得解为:x x1 1=x=x4 4=x=x5 5=0, x=0, x2 2=x=x3 3=x=x6 6=0.111, v=0.111, v=3, x=3, x1 1=x=x4 4=x=x5 5= 0= 0,x x2 2=x=x3 3=x=x6 6=1/3, =1/3, 即即X X

24、* * =(0,1/3,1/3,0,0,1/3)=(0,1/3,1/3,0,0,1/3)T T,所以甲的最优策略为作出策,所以甲的最优策略为作出策略略 2 2、 3 3、 6 6的概率都为的概率都为0.333,0.333,而作出而作出 1 1、 4 4、 5 5 的概率为的概率为0 0,此时,此时V VG G=V=V=3=3。3 3矩阵对策的混合策略矩阵对策的混合策略管管 理理 运运 筹筹 学学20 同样可以建立对策同样可以建立对策G G=S=S1 1,S S2 2,A A 中求乙方最佳策略的线性规划如下:中求乙方最佳策略的线性规划如下: Min yMin y1 1+y+y2 2+y+y3 3

25、+y+y4 4+y+y5 5+y+y6 6 约束条件:约束条件: 5y5y1 1+3y+3y2 2+3y+3y3 3+3y+3y4 4+y+y5 5+3y+3y6 6 11 3y 3y1 1+5y+5y2 2+3y+3y3 3+3y+3y4 4+3y+3y5 5+y+y6 6 11 3y 3y1 1+y+y2 2+5y+5y3 3+3y+3y4 4+3y+3y5 5+3y+3y6 6 11 y y1 1+3y+3y2 2+3y+3y3 3+5y+5y4 4+3y+3y5 5+3y+3y6 6 11 3y 3y1 1+3y+3y2 2+3y+3y3 3+y+y4 4+5y+5y5 5+3y+3y

26、6 6 11 3y 3y1 1+3y+3y2 2+y+y3 3+3y+3y4 4+3y+3y5 5+5y+5y6 6 11 y yi i0,i=1,2,0,i=1,2,6,6 可解得解为:可解得解为: y y1 1=y=y4 4=y=y5 5=0.111, y=0.111, y2 2=y=y3 3=y=y6 6=0, v=0, v=3, y=3, y1 1=y=y4 4=y=y5 5= 1/3= 1/3, y y2 2=y=y3 3=y=y6 6=0=0,即,即Y Y* * =(1/3,0,0,1/3,1/3,0)=(1/3,0,0,1/3,1/3,0)T T。 所以田忌的最优混合策略为作出策

27、略所以田忌的最优混合策略为作出策略 1 1、 4 4、 5 5的概率都为的概率都为1/3,1/3,而作出而作出 2 2, 3 3, 6 6的概率为的概率为0 0,此时,此时V VG G=V=VG G-k=1-k=1。3 3矩阵对策的混合策略矩阵对策的混合策略管管 理理 运运 筹筹 学学21 齐王赛马问题的对策最优解可简记为齐王赛马问题的对策最优解可简记为X X* *= =(0,1/3,1/3,0,0,1/3)(0,1/3,1/3,0,0,1/3)T T,Y Y* *= =(1/3,0,0,1/3,1/3,0)(1/3,0,0,1/3,1/3,0)T T,对策值,对策值V VG G=1=1。例例

28、 两个局中人进行对策,规则是两人互相独立的各自从两个局中人进行对策,规则是两人互相独立的各自从1 1、2 2、3 3这三个这三个数字中任意选写一个数字。如果两人所写的数字之和为偶数,则局中人乙数字中任意选写一个数字。如果两人所写的数字之和为偶数,则局中人乙支付给局中人甲以数量为此和数的报酬;如果两人所写数字之和为奇数,支付给局中人甲以数量为此和数的报酬;如果两人所写数字之和为奇数,则局中人甲付给局中人乙以数量为此和数的报酬。试求出其最优策略。则局中人甲付给局中人乙以数量为此和数的报酬。试求出其最优策略。 解:首先计算局中人甲的赢得矩阵如下表:解:首先计算局中人甲的赢得矩阵如下表:4-56-34

29、-52-34 1 1(出(出1 1) 2 2(出(出2 2) 3 3(出(出3 3) 3 3(出(出3 3) 2 2(出(出2 2) 1 1(出(出1 1)甲的赢甲的赢 得得甲的策略甲的策略3 3矩阵对策的混合策略矩阵对策的混合策略乙的策略乙的策略管管 理理 运运 筹筹 学学22即甲的赢得矩阵为即甲的赢得矩阵为A A: 可知无纯策略意义的解,下面求其在混合策略下的解。可知无纯策略意义的解,下面求其在混合策略下的解。A A的各元素都加上的各元素都加上6 6,得到,得到建立线性规划模型如下:建立线性规划模型如下: Min xMin x1 1+x+x2 2+x+x3 3 Max yMax y1 1+

30、y+y2 2+y+y3 3 S.T.8xS.T.8x1 1+3x+3x2 2+10 x+10 x3 3 1 8y1 8y1 1+3y+3y2 2+10y+10y3 311 3x 3x1 1+10 x+10 x2 2+x+x3 3 1 3y1 3y1 1+10y+10y2 2+y+y3 3 11 10 x 10 x1 1+x+x2 2+12x+12x3 3 1 10y1 10y1 1+y+y2 2+12y+12y3 311 x x1 1,x,x2 2,x,x3 3 0 y0 y1 1,y,y2 2,y,y3 3 00 654543432A1211011031038A3 3矩阵对策的混合策略矩阵对

31、策的混合策略管管 理理 运运 筹筹 学学23得到得到x x1 1=0.25, x=0.25, x2 2=0.50, x=0.50, x3 3=0.25=0.25;y y1 1=0.25, y=0.25, y2 2=0.50, y=0.50, y3 3=0.25=0.25。即此对策的解为即此对策的解为X X* * =(0.25,0.50,0.25)=(0.25,0.50,0.25)T T,Y Y* * =(0.25,0.50,0.25)=(0.25,0.50,0.25)T T。V VG G=V=VG G-k=0-k=0。3 3矩阵对策的混合策略矩阵对策的混合策略管管 理理 运运 筹筹 学学24例

32、例4 4 甲乙两个企业生产同一种电子产品,甲企业可以采取的策略措施甲乙两个企业生产同一种电子产品,甲企业可以采取的策略措施有有: :(1)(1)降低产品价格;降低产品价格;(2)(2)提高产品质量;提高产品质量;(3)(3)推出新产品。乙企业考虑采推出新产品。乙企业考虑采取的策略措施有取的策略措施有(1)(1)增加广告费用;增加广告费用;(2)(2)增设维修网点,加强售后服务;增设维修网点,加强售后服务;(3)(3)改进产品性能。由于甲乙两个企业财力有限,都只能采取一个措施。假定改进产品性能。由于甲乙两个企业财力有限,都只能采取一个措施。假定这两个企业所占有的市场总份额一定,由于各自采取的措施

33、不同,通过预这两个企业所占有的市场总份额一定,由于各自采取的措施不同,通过预测今后两个企业的市场占有份额变动情况如下表,试求出这两个企业各自测今后两个企业的市场占有份额变动情况如下表,试求出这两个企业各自的最优策略。的最优策略。3-58-6510108-12 1 1(措施(措施1 1) 2 2(措施(措施2 2) 3 3(措施(措施3 3) 3 3(措施(措施3 3) 2 2(措施(措施2 2) 1 1(措施(措施1 1)3 3矩阵对策的混合策略矩阵对策的混合策略甲的赢甲的赢 得得甲的策略甲的策略乙的策略乙的策略管管 理理 运运 筹筹 学学25解:解:易知此对策无纯策略意义下的解。把易知此对策

34、无纯策略意义下的解。把A A的每一个元素加上的每一个元素加上1212,得到,得到A A建立线性规划模型如下:建立线性规划模型如下: Min xMin x1 1+x+x2 2+x+x3 3 Max yMax y1 1+y+y2 2+y+y3 3 S.T.22xS.T.22x1 1+20 x+20 x2 21 22y1 22y1 1+6y+6y2 2+15y+15y3 3 11 6x 6x1 1+17x+17x2 2+22x+22x3 3 1 20y1 20y1 1+17y+17y2 2+7y+7y3 3 11 15x 15x1 1+7x+7x2 2+20 x+20 x3 3 1 22y1 22y

35、2 2+20y+20y3 3 11 x x1 1,x,x2 2,x,x3 30 y0 y1 1,y,y2 2,y,y3 300得到:得到:x x1 1=0.027,x=0.027,x2 2=0.020,x=0.020,x3 3=0.023=0.023;y y1 1=0.0225,y=0.0225,y2 2=0.0225,y=0.0225,y3 3=0.025=0.025。V=14.29V=14.29。x x1 1=0.3858, x=0.3858, x2 2=0.2858, x=0.2858, x3 3=0.3286=0.3286;y y1 1=0.3215,y=0.3215,y2 2=0.3

36、215,y=0.3215,y3 3=0.3572=0.3572。即此对策的解为即此对策的解为 X X* * =(0.3858,0.2858,0.3286)=(0.3858,0.2858,0.3286)T T ,Y,Y* * =(0.3215,0.3215,0.3572)=(0.3215,0.3215,0.3572)T T。V VG G=V=VG G-k=2.29-k=2.29。202207172015622A3 3矩阵对策的混合策略矩阵对策的混合策略管管 理理 运运 筹筹 学学26优超原则:优超原则: 假设假设矩阵对策矩阵对策 G = SG = S1 1, S, S2 2, A , A 甲方赢

37、得矩阵甲方赢得矩阵 A=aA=aijij m m n n若存在两行(列),若存在两行(列),s s 行(列)的各元素均优于行(列)的各元素均优于 t t 行(列)的元行(列)的元素,即素,即a asjsj a atj tj j=1,2 j=1,2 n ( a n ( ais is a ait it i=1,2 i=1,2 m ) m )称甲方策略称甲方策略 s s优超于优超于 t t ( ( s s优超于优超于 t t) )。 优超原则优超原则:当局中人甲方的策略:当局中人甲方的策略 t t被其它策略所被其它策略所优超时,可在优超时,可在其赢得矩阵其赢得矩阵A A中划去第中划去第t t行(同理

38、,当局中人乙方的策略行(同理,当局中人乙方的策略 t t被其它策被其它策略所略所优超时,可在矩阵优超时,可在矩阵A A中划去第中划去第t t列)。列)。 如此得到阶数较小的赢得矩阵如此得到阶数较小的赢得矩阵AA,其对应的矩阵对策其对应的矩阵对策G= S1, S2, A 与与 G = S1, S2, A 等价,即解相同。等价,即解相同。3 3矩阵对策的混合策略矩阵对策的混合策略管管 理理 运运 筹筹 学学27例例. . 设设甲方的益损值,赢得矩阵为甲方的益损值,赢得矩阵为 3 2 0 3 0 被第被第3 3、4 4行所优超行所优超 5 0 2 5 9 被第被第3 3行所优超行所优超A= 7 3

39、9 5 9 4 6 8 7 5.5 6 0 8 8 3得到得到 7 3 9 5 9 被第被第1 1列所优超列所优超A1= 4 6 8 7 5.5 被第被第2 2列所优超列所优超 6 0 8 8 33 3矩阵对策的混合策略矩阵对策的混合策略管管 理理 运运 筹筹 学学28得到得到 7 3 9 A2= 4 6 5.5 6 0 3 被第被第1 1行所优超行所优超得到得到 7 3 9 被第被第1 1列所优超列所优超 A3= 4 6 5.5 7 3最终得到最终得到 A4= 4 6 3 3矩阵对策的混合策略矩阵对策的混合策略管管 理理 运运 筹筹 学学29对对A A4 4计算,用线性规划方法得到:计算,用

40、线性规划方法得到:(注意:余下的策略为(注意:余下的策略为 3 3, 4 4, 1 1, 2 2)甲:甲: X* = (0,0,1/15,2/15,0)T V=5 X*= (0,0,1/3 ,2/3 ,0)T 乙:乙: Y* = (1/10,1/10,0,0,0)T V=5 Y*= (1/2 ,1/2 ,0,0,0)T 。 注:注:利用优超原则化简赢得矩阵时,有可能将原对策问题的解也利用优超原则化简赢得矩阵时,有可能将原对策问题的解也划去一些(多解情况);划去一些(多解情况);线性规划求解时有可能是多解问题。线性规划求解时有可能是多解问题。3 3矩阵对策的混合策略矩阵对策的混合策略管管 理理

41、运运 筹筹 学学30 4 4其他类型的对策论简介其他类型的对策论简介 在对策论中可以根据不同方式对对策问题进行分类,通在对策论中可以根据不同方式对对策问题进行分类,通常分类的方式有(常分类的方式有(1)根据局中人的个数,分为二人对策和多)根据局中人的个数,分为二人对策和多人对策;(人对策;(2)根据各局中人的赢得函数的代数和是否为零,)根据各局中人的赢得函数的代数和是否为零,可分为零和对策和非零和对策;(可分为零和对策和非零和对策;(3)根据局中人是否合作,)根据局中人是否合作,又可分为合作对策和非合作对策;(又可分为合作对策和非合作对策;(4)根据局中人的策略集)根据局中人的策略集中个数,又

42、分为有限对策和无限对策(或连续对策);(中个数,又分为有限对策和无限对策(或连续对策);(5)也可根据局中人掌握信息的情况及决策选择是否和时间有关也可根据局中人掌握信息的情况及决策选择是否和时间有关可分为完全信息静态对策、完全信息动态对策、非完全信息可分为完全信息静态对策、完全信息动态对策、非完全信息静态对策及非完全信息动态对策;也可以根据对策模型的数静态对策及非完全信息动态对策;也可以根据对策模型的数字特征又分为矩阵对策、连续对策、微分对策、阵地对策、字特征又分为矩阵对策、连续对策、微分对策、阵地对策、凸对策、随机对策。凸对策、随机对策。 本节只对对策论中非合作对策的完全信息对策、多人非本节

43、只对对策论中非合作对策的完全信息对策、多人非合作对策、非零和对策作一个简单的叙述性介绍。合作对策、非零和对策作一个简单的叙述性介绍。管管 理理 运运 筹筹 学学31 4 4其他类型的对策论简介其他类型的对策论简介一、完全信息静态对策一、完全信息静态对策 该对策是指掌握了参与人的特征、战略空间、支付函数等知识和信该对策是指掌握了参与人的特征、战略空间、支付函数等知识和信息并且参与人同时选择行动方案或虽非同时但后行动者并不知道前行动息并且参与人同时选择行动方案或虽非同时但后行动者并不知道前行动者采取了什么行动方案。者采取了什么行动方案。 纳什均衡是一个重要概念。在一个战略组合中,给定其他参与者战纳

44、什均衡是一个重要概念。在一个战略组合中,给定其他参与者战略的情况下,任何参与者都不愿意脱离这个组合,或者说打破这个僵局,略的情况下,任何参与者都不愿意脱离这个组合,或者说打破这个僵局,这种均衡就称为这种均衡就称为纳什均衡纳什均衡。下面以著名的。下面以著名的“囚徒困境囚徒困境”来进一步阐述。来进一步阐述。 例例1 “1 “囚徒困境囚徒困境”说的是两个囚犯的故事。这两个囚徒一起做坏事,结果被说的是两个囚犯的故事。这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。在这警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。在这种情形下,两个囚犯都

45、可以做出自己的选择:或者坦白(即与警察合作,从而背种情形下,两个囚犯都可以做出自己的选择:或者坦白(即与警察合作,从而背叛他的同伙),或者抵赖(也就是与他的同伙合作,而不是与警察合作)。这两叛他的同伙),或者抵赖(也就是与他的同伙合作,而不是与警察合作)。这两个囚犯都知道,如果他俩都能抵赖的话,就都会被释放,因为只要他们拒不承认,个囚犯都知道,如果他俩都能抵赖的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪。但警方也明白这一点,所以他们就给了这两个囚犯一点儿警方无法给他们定罪。但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人坦白,即告发他的同伙,那么他就可

46、以被无罪释放。刺激:如果他们中的一个人坦白,即告发他的同伙,那么他就可以被无罪释放。而他的同伙就会被按照最重的罪来判决。当然,如果这两个囚犯都坦白,两个人而他的同伙就会被按照最重的罪来判决。当然,如果这两个囚犯都坦白,两个人都会被按照轻罪来判决。如图都会被按照轻罪来判决。如图1-11-1所示。所示。管管 理理 运运 筹筹 学学32 4 4其他类型的对策论简介其他类型的对策论简介坦白坦白抵赖抵赖轻罪,轻罪轻罪,轻罪重罪,无罪重罪,无罪重罪,无罪重罪,无罪释放,释放释放,释放坦白坦白抵赖抵赖图图1-1 1-1 囚徒困境囚徒困境 由分析可知,上例中每个囚犯都会选择坦白,因此这个战略组合由分析可知,上

47、例中每个囚犯都会选择坦白,因此这个战略组合是固定的,是固定的,( (坦白,坦白坦白,坦白) )就是纳什均衡解。而这个均衡是不会被打破的,就是纳什均衡解。而这个均衡是不会被打破的,即使他们在坐牢之前达成协议。即使他们在坐牢之前达成协议。 囚徒困境反映了个人理性和集体理性的矛盾。对于双方,(抵赖,囚徒困境反映了个人理性和集体理性的矛盾。对于双方,(抵赖,抵赖)的结果是最好的,但因为每个囚徒都是理性人,他们追求自身效抵赖)的结果是最好的,但因为每个囚徒都是理性人,他们追求自身效应的最大化,结果就变成了(坦白,坦白)。个人理性导致了集体不理应的最大化,结果就变成了(坦白,坦白)。个人理性导致了集体不理

48、性。性。管管 理理 运运 筹筹 学学33 4 4其他类型的对策论简介其他类型的对策论简介二、完全信息动态对策二、完全信息动态对策 在完全信息静态对策中,假设各方都同时选择行动。现在情况稍复在完全信息静态对策中,假设各方都同时选择行动。现在情况稍复杂一些。如果各方行动存在先后顺序,后行的一方会参考先行者的策略杂一些。如果各方行动存在先后顺序,后行的一方会参考先行者的策略而采取行动,而先行者也会知道后行者会根据他的行动采取何种行动,而采取行动,而先行者也会知道后行者会根据他的行动采取何种行动,因此先行者会考虑自己行动会对后行者的影响后选择行动。这类问题称因此先行者会考虑自己行动会对后行者的影响后选

49、择行动。这类问题称为完全信息动态对策问题。为完全信息动态对策问题。 例例2 2 某行业中只有一个垄断企业某行业中只有一个垄断企业A A,有一个潜在进入者,有一个潜在进入者企业企业B B。B B可以选可以选择进入或不进入该行业这两种行动,而择进入或不进入该行业这两种行动,而A A当当B B进入时,可以选择默认或者报复两种进入时,可以选择默认或者报复两种行动。如果行动。如果B B进入后进入后A A企业报复,将造成两败俱伤的结果,但如果企业报复,将造成两败俱伤的结果,但如果A A默认默认B B进入,必进入,必然对然对A A的收益造成损失。同样的,如果的收益造成损失。同样的,如果B B进入而进入而A

50、A报复,则报复,则B B受损,反之,将受益。受损,反之,将受益。把此关系用图把此关系用图1-21-2表示。表示。默许默许报复报复50,10050,100-20,0-20,00,2000,2000,2000,200进入进入不进入不进入图图1-2 A1-2 A、B B的行动及结果的行动及结果A AB B管管 理理 运运 筹筹 学学34 4 4其他类型的对策论简介其他类型的对策论简介 由分析可知,上例中(由分析可知,上例中(B B选择不进入,选择不进入,A A选择报复)和(选择报复)和(B B选择进入,选择进入,A A选择默许)都是纳什均衡解。但在实际中,(选择默许)都是纳什均衡解。但在实际中,(B

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(第15章-对策论-(管理运筹学-第三版-课件-.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|