1、优秀领先 飞翔梦想 成人成才8.2 第2课时 加减法【教学目标】 1.用代入法、加减法解二元一次方程组.毛 2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想. 3.会用二元一次方程组解决实际问题. 4.在列方程组的建模过程中,强化方程的模型思想,培养学生列方程解决实际问题的意识和能力. 5.将解方程组的技能训练与实际问题的解决融为一体,进一步提高解方程组的技能. 【教学重点与难点】 用代入消元法解二元一次方程的步骤。【教学过程】一、创设情境,导入新课 甲、乙、丙三位同学是好朋友,平时互相帮助。甲借给乙10元钱,乙借给丙8元钱,丙又给甲12元钱,如果允许转帐,最后甲、乙、丙三
2、同学最终谁欠谁的钱,欠多少? 二、师生互动,课堂探究 (一)提高问题,引发讨论 我们知道,对于方程组 , 可以用代入消元法求解。 这个方程组的两个方程中,y的系数有什么关系?利用这种关系你能发现新的消元方法吗? (二)导入知识,解释疑难 1.问题的解决 上面的两个方程中未知数y的系数相同,可消去未知数y,得(2x+y)-(x+y)=40-22 即x=18,把x=18代入得y=4。另外,由也能消去未知数y,得(x+y)-(2x+y)=22-40 即-x=-18,x=18,把x=18代入得y=4. 2.想一想:联系上面的解法,想一想应怎样解方程组 分析:这两个方程中未知数y的系数互为相反数,因此由
3、可消去未知数y,从而求出未知数x的值。 解:由得 19x=11.6 x= 把x=代入得y=- 这个方程组的解为 3.加减消元法的概念 从上面两个方程组的解法可以发现,把两个二元一次方程的两边分别进行相加减,就可以消去一个未知数,得到一个一元一次方程。 两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。 4.例题讲解 用加减法解方程组 分析:这两个方程中没有同一个未知数的系数相反或相同,直接加减两个方程不能消元,试一试,能否对方程变形,使得两个方程中某个未知数的系数相反或相同。 解:3,得
4、 9x+12y=48 2,得 10x-12y=66 ,得 19x=114 x=6 把x=6代入,得36+4y=16 4y=-2, y=- 所以,这个方程组的解是 议一议:本题如果用加减法消去x应如何解?解得结果与上面一样吗? 解:5,得 15x+20y=80 3,得 15x-18=99 -,得 38y=-19 y=- 把y=-代入,得3x+4(-)=16 3x=18 x=6 所以,这个方程组的解为 如果求出y=-后,把y=代入也可以求出未知数x的值。 5.做一做 解方程组 分析:本题不能直接运用加减法求解,要进行化简整理后再求解。 解:化简方程组,得 ,得4x=36 x=9 把x=9代入(也可
5、代入,但不佳),得 109-3y=48 -3y=-42 y=14 这个方程组的解为 点评:当方程组比较复杂时,应先化简,并整理成标准形式.本题还可以把2x+3y和2x-3y当成两个整体,用换元法,设2x+3y=A,2x-3y=B,转化为以A、B为未知数的二元一次方程组. 6.想一想 (1)加减消元法解二元一次方程组的基本思想是什么? (2)用加减消元法解二元一次方程组的主要步骤有哪些?师生共析:(1)用加减消元法解二元一次方程组的基本思路仍然是“消元”. (2)用加减法解二元一次方程组的一般步骤: 第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相
6、加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数. 第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元. 第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑. (三)归纳总结,知识回顾 本节课,我们主要是学习了二元一次方程组的另一解法加减法.通过把方程组中的两个方程进行相加或相减,消去一个未知数,化“二元”为“一元”. 作业:1.用加减法解下面方程组时,你认为先消去哪个未知数较简单,填写消元的方法. (1) ,消元方法_. (2) ,消元方法_.2.用加减法解下列方程组: (1) (2) (3) (4) 参考答案 1.(1)-消去y (2)2+3消去n 2.(1) (2) (3) (4) 本资料由七彩教育网 提供!第 4 页 共 4 页