1、 中考一模数学试题中考一模数学试题 一、单选题一、单选题 1-7 的相反数是( ) A B C D 2一个数用科学记数法表示为 3.14105,则这个数是( ) A314 B3140 C31400 D314000 3下列图形中,既是轴对称图形又是中心对称图形的是( ) A B C D 4如图所示的几何体的俯视图是( ) A B C D 5某班 6 名同学在一次“1 分钟仰卧起坐”测试中,成绩分别为(单位:次) :38,45,41,37,40,38.这组数据的众数、中位数分别是( ) A45,40 B38,39 C38,38 D45,38 6下列运算结果为的是( ) A Ba4-a C D 7如
2、图,点 O 在直线 l1上,且AOB=90,若2=51,则1的度数为( ) A51 B49 C39 D29 8不等式组 解集在数轴上表示正确的是( ) A B C D 9如图,在平面直角坐标系中,与位似,点 O 是它们的位似中心,已知,则与的面积之比为( ) A B C D 10如图,ABC为直角三角形,C90,BC2cm,A30,四边形 DEFG 为矩形,DE2cm,EF6cm,且点 C、B、E、F 在同一条直线上,点 B 与点 E 重合RtABC以每秒 1cm 的速度沿矩形 DEFG 的边 EF 向右平移,当点 C 与点 F 重合时停止设 RtABC与矩形 DEFG 的重叠部分的面积为 y
3、cm2,运动时间 xs能反映 ycm2与 xs 之间函数关系的大致图象是( ) A B C D 二、填空题二、填空题 11因式分解:4m216= 12一个多边形的内角和是外角和的 2 倍,则这个多边形的边数为 132022 北京冬奥会延庆赛区正在筹建的高山滑雪速滑雪道的平均坡角约为,在此雪道向下滑行 100 米,高度大约下降了 米. 14某市林业部门要考察某种幼树在一定条件下的移植成活率,实验结果统计如下: 移植总数(n) 50 270 400 750 1500 3500 7000 9000 14000 成活数(m) 47 235 369 662 1335 3180 6321 8073 126
4、28 成活频率() 0.94 0.87 0.923 0.883 0.89 0.908 0.903 0.897 0.902 由此可以估计该种幼树移植成活的概率为 (结果保留小数点后两位) 15关于 x 的一元二次方程 x2+2x+m0 有一根为 2,则 m 的值为 16若 a2b10,则代数式 2a4b 的值为 . 17学校花园边墙上有一宽为的矩形门,量得门框对角线长为,为美化校园,现准备打掉地面上方的部分墙体,使其变为以为直径的圆弧形门,则要打掉墙体(阴影部分)的面积是 三、解答题三、解答题 18计算: 19下面是“作一个角等于已知角”的尺规作图过程.已知:AOB,求作:一个角,使它等于AOB
5、.作法:如图 作射线 ; 以 O 为圆心,任意长为半径作孤,交 OA 于 C,交 OB 于 D; 以 为圆心,OC 为半径作弧 ,交 于 ; 以 为圆心,CD 为半径作弧,交弧 于 ; 过点 作射线 ,则 就是所求作的角 请完成下列问题: (1)该作图的依据是 (填序号)ASA;SAS;AAS;SSS (2)请证明 AOB 20为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项) ,并根据调查结果绘制了如图统计图: 根据统计图所提供的信息,解答下列问题: (1)本
6、次抽样调查中的学生人数是 ; (2)补全条形统计图; (3)若该校共有 1000 名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数. 21如图,在菱形 ABCD 中,对角线 AC,BD 交于点 O,过点 A 作 AEBC于点 E,延长 BC 到点F,使得 CF=BE,连接 DF, (1)求证:四边形 AEFD 是矩形; (2)连接 OE,若 AB13,OE2,求 AE 的长 222020 年我国新型冠状病毒肺炎疫情防控工作进入常态化,某社区为检测出入小区人员体温情况,特采购了一批测温枪,已知 1 支 A 型号测温枪和 2 支 B 型号测温枪共需 380 元,2 支 A 型号测温枪
7、和 3 支 B 型号测温枪共需 610 元 (1)两种型号的测温枪的单价各是多少元? (2)已知该社区需要采购两种型号的测温枪共 40 支,且 A 型号的数量不超过 B 型号的数量的 3倍,请设计出最省钱的购买方案,并说明理由 23如图,一次函数(为常数,且)的图象与反比例函数(为常数,且)的图象相交于,两点 (1)求 n 的值; (2)若一次函数的图象与反比例函数的图象有且只有一个公共点,求 m 的值 24如图,D,E 是以为直径的圆 O 上两点,且,直线是圆 O 的切线 (1)求证:ABCD; (2)若的长度为 12,求圆 O 的半径; (3)过点 D 作,垂足为 F,求证: 25如图,抛
8、物线 yax2+bx+c 与 x 轴交于点 A(3,0)和点 B(1,0) ,与 y 轴交于点 C(0,3) (1)求抛物线的解析式并写出其顶点坐标; (2)若动点 P 在第二象限内的抛物线上,动点 N 在对称轴 l 上 当 PANA,且 PANA 时,求此时点 P 的坐标; 当四边形 PABC 的面积最大时,求四边形 PABC 面积的最大值及此时点 P 的坐标 答案解析部分答案解析部分 1 【答案】B 2 【答案】D 3 【答案】B 4 【答案】D 5 【答案】B 6 【答案】C 7 【答案】C 8 【答案】A 9 【答案】D 10 【答案】A 11 【答案】4(m+2) (m2) 12 【
9、答案】6 13 【答案】50 14 【答案】0.90 15 【答案】-8 16 【答案】2 17 【答案】 18 【答案】解: 19 【答案】(1) (2)证明:由作法得已知:OC , , , 在OCD和 中, , , . 20 【答案】(1)100 (2)解:舞蹈有 10010%=10 人,打球有 100-30-20-10=40 人, 条形图如图所示: (3)解:估计该校课余兴趣爱好为“打球”的学生人数为 100040%=400 人. 21 【答案】(1)证明:四边形是菱形, 且, , , , , 四边形是平行四边形, , , 四边形是矩形; (2)解:四边形是菱形, , , , , , ,
10、 菱形的面积, 即, 解得: 22 【答案】(1)解:设 A 型号测温枪的单价为 x 元,B 型号测温枪的单价为 y 元, 依题意,得:, 解得:, 答:A 型号测温枪的单价为 80 元,B 型号测温枪的单价为 150 元; (2)解:设购进 A 型号测温枪 m 支,则购进 B 型号测温枪(40-m)支, 依题意,得:m3(40-m), 解得:m30, 设本次采购所花总金额为 w 元, 则 w=80m+150(40-m)-70m+6000, -700, w 随 m 的增大而减小, 当 m30 时,w 取得最小值,最小值为 3900, 当购进 30 支 A 型号测温枪、10 支 B 型号测温枪时
11、,所花费用最少,最少费用为 3900 元 23 【答案】(1)解:由题意得: , 解得, 一次函数的解析式为,反比例函数的解析式为, 把点代入可得: (2)解:一次函数的图象与反比例函数的图象有且只有一个公共点, 只有一个解, , 令, 解得或, 故当或时,一次函数的图象与反比例函数的图象有且只有一个公共点; 24 【答案】(1)证明:连接, AED=45, AOD=2AED=90, 直线 CD 与圆 O 相切, ODCD, CDO=AOD=90, AB CD; (2)解:AB 为圆 O 的直径, AEB=90, B=ADE, sinBsinADE, AE 的长度为 12, 又sinB=, A
12、B=13, O的半径为; (3)证明:DGEB,交 EB 的延长线于点 G,连接 DB, AB 是O直径, AEB=90, AED=45, BED=AED=45, ED 平分AEB, DFAE,DGEB, DF=DG, 四边形 DFEG 为正方形, DF=EF=EG, AOD=BOD=90,OA=OB, AD=BD, RtADFRtBDG(HL) , AF=BG, AE+BE=EF+EG=2EF=2DF, 即有: 25 【答案】(1)解:把点 A、B、C 的坐标代入二次函数表达式得: ,解得, 故:抛物线的解析式为 y=-x2-2x+3, y=-x2-2x+3=-(x+1)2+4, 顶点坐标为
13、(-1,4); (2)解:A(-3,0),B(1,0), OA=3,OB=1, 如解图,作 PDx轴于点 D,设对称轴 l 与 x 轴交于点 Q,连接 AC,OP, 点 P 在 y=-x2-2x+3 上, 设点 P(x,-x2-2x+3), PANA,且 PA=NA, PAD+APD=PAD+NAQ=90, APD=NAQ, 又PDA=AQN=90, PADANQ(AAS), PD=AQ, PD=AQ=AO-QO=3-1=2 即:y=-x2-2x+3=2 解得:x1(舍去)或 x1, 点 P 坐标为(1,2); 连接 OP,设 P(x,-x2-2x+3),且-3x0 S四边形PABC=SOBC+SCPO+SPOA SOBC=OBOC=13=,SOCP=ODOC=|x|3 又-3x0,所以 SOCP=x, SOAP=3|yP|=(-x2-2x+3)=x23x+ S四边形PABC=SOBC+SCPO+SPOA =+(x)+(x23x+)=x2x+6, 当 x时,S四边形PABC最大=, 此时 P(-,)