1、2018年贵州省铜仁市中考数学试卷一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D4个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上1(4.00分)(2018铜仁市)9的平方根是()A3B3C3和3D812(4.00分)(2018铜仁市)习近平总书记提出了未来五年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A1.17107B11.7106C0.117107D1.171083(4.00分)(2018铜仁市)关于x的一元二次方程x24x+3=0的解为()Ax1=1,x2=3B
2、x1=1,x2=3Cx1=1,x2=3Dx1=1,x2=34(4.00分)(2018铜仁市)掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()ABCD5(4.00分)(2018铜仁市)如图,已知圆心角AOB=110,则圆周角ACB=()A55B110C120D1256(4.00分)(2018铜仁市)已知ABCDEF,相似比为2,且ABC的面积为16,则DEF的面积为()A32B8C4D167(4.00分)(2018铜仁市)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A8B9C10D118(4.00分)(2018铜仁市)在同一平面内,设a
3、、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A1cmB3cmC5cm或3cmD1cm或3cm9(4.00分)(2018铜仁市)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(2,y1)、B(1,y2)两点,则不等式ax+b的解集为()Ax2或0x1Bx2C0x1D2x0或x110(4.00分)(2018铜仁市)计算+的值为()ABCD二、填空题:(本大题共8个小题,每小题4分,共32分)11(4.00分)(2018铜仁市)分式方程=4的解是x= 12(4.00分)(2018铜仁市)因式分解:a3ab2= 13(4.00分)(2
4、018铜仁市)一元一次不等式组的解集为 14(4.00分)(2018铜仁市)如图,mn,1=110,2=100,则3= 15(4.00分)(2018铜仁市)小米的爸爸为了了解她的数学成绩情况,现从中随机抽取他的三次数学考试成绩,分别是87,93,90,则三次数学成绩的方差是 16(4.00分)(2018铜仁市)定义新运算:ab=a2+b,例如32=32+2=11,已知4x=20,则x= 17(4.00分)(2018铜仁市)在直角三角形ABC中,ACB=90,D、E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分BCE,BC=2,则AB= 18(4.00分)(2018铜仁市)已知在平面直
5、角坐标系中有两点A(0,1),B(1,0),动点P在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为 三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19(10.00分)(2018铜仁市)(1)计算:4cos60(3.14)0()1(2)先化简,再求值:(1),其中x=220(10.00分)(2018铜仁市)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AEBF21(10.00分)(2018铜仁市)张老师为了了解班级学生完成数学课前预习的具体情况,对本班
6、部分学生进行了为期半个月的跟踪调查他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率22(10.00分)(2018铜仁市)如图,有一铁塔AB,为了测量其高度,在水平面选取C,D两点,在点C处测得A的仰角为45,距点C的10米D处测得A的仰角为60,且C、D、B在同一水平直线上,求铁塔AB的高度
7、(结果精确到0.1米,1.732)四、(本大题满分12分)23(12.00分)(2018铜仁市)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用五、(本大题满分12分)24(12.00分)(2018铜仁市)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直
8、径作O交AB于点D,交AC于点G,直线DF是O的切线,D为切点,交CB的延长线于点E(1)求证:DFAC;(2)求tanE的值六、(本大题满分14分)25(14.00分)(2018铜仁市)如图,已知抛物线经过点A(1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与BOD相似
9、?若存在,求出点Q的坐标;若不存在,请说明理由2018年贵州省铜仁市中考数学试卷参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D4个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上1(4.00分)(2018铜仁市)9的平方根是()A3B3C3和3D81【分析】依据平方根的定义求解即可【解答】解:9的平方根是3,故选:C【点评】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键2(4.00分)(2018铜仁市)习近平总书记提出了未来五年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据1170
10、0000用科学记数法表示为()A1.17107B11.7106C0.117107D1.17108【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数【解答】解:11700000=1.17107故选:A【点评】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3(4.00分)(2018铜仁市)关于x的一元二次方程x24x+3=0的解为()Ax1=1
11、,x2=3Bx1=1,x2=3Cx1=1,x2=3Dx1=1,x2=3【分析】利用因式分解法求出已知方程的解【解答】解:x24x+3=0,分解因式得:(x1)(x3)=0,解得:x1=1,x2=3,故选:C【点评】此题考查了解一元二次方程因式分解法,熟练掌握因式分解的方法是解本题的关键4(4.00分)(2018铜仁市)掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()ABCD【分析】根据题意和题目中的数据可以求得点数为奇数的概率【解答】解:由题意可得,点数为奇数的概率是:,故选:C【点评】本题考查概率公式,解答本题的关键是明确题意,利用概率的知识解答5(
12、4.00分)(2018铜仁市)如图,已知圆心角AOB=110,则圆周角ACB=()A55B110C120D125【分析】根据圆周角定理进行求解一条弧所对的圆周角等于它所对的圆心角的一半【解答】解:根据圆周角定理,得ACB=(360AOB)=250=125故选:D【点评】此题考查了圆周角定理注意:必须是一条弧所对的圆周角和圆心角之间才有一半的关系6(4.00分)(2018铜仁市)已知ABCDEF,相似比为2,且ABC的面积为16,则DEF的面积为()A32B8C4D16【分析】由ABCDEF,相似比为2,根据相似三角形的面积的比等于相似比的平方,即可得ABC与DEF的面积比为4,又由ABC的面积
13、为16,即可求得DEF的面积【解答】解:ABCDEF,相似比为2,ABC与DEF的面积比为4,ABC的面积为16,DEF的面积为:16=4故选:C【点评】此题考查了相似三角形的性质此题比较简单,注意掌握相似三角形的面积的比等于相似比的平方的性质的应用7(4.00分)(2018铜仁市)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A8B9C10D11【分析】根据多边形的内角和公式及外角的特征计算【解答】解:多边形的外角和是360,根据题意得:180(n2)=3360解得n=8故选:A【点评】本题主要考查了多边形内角和公式及外角的特征求多边形的边数,可以转化为方程的问题来解决8(4
14、.00分)(2018铜仁市)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A1cmB3cmC5cm或3cmD1cm或3cm【分析】分类讨论:当直线c在a、b之间或直线c不在a、b之间,然后利用平行线间的距离的意义分别求解【解答】解:当直线c在a、b之间时,a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,a与c的距离=41=3(cm);当直线c不在a、b之间时,a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,a与c的距离=4+1=5(cm),综上所述,a与c的距离为3cm或3cm
15、故选:C【点评】本题考查了平行线之间的距离,从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离平行线间的距离处处相等注意分类讨论9(4.00分)(2018铜仁市)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(2,y1)、B(1,y2)两点,则不等式ax+b的解集为()Ax2或0x1Bx2C0x1D2x0或x1【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集【解答】解:观察函数图象,发现:当2x0或x1时,一次函数图象在反比例函数图象的下方,不等式ax+b的解集是2x0或x1故选:D【点评】本题考查了反比例函数与
16、一次函数的交点问题,解题的关键是根据两函数图象的上下位置关系解不等式本题属于基础题,难度不大,解决该题型题目时,根据两函数图象的上下位置关系结合交点坐标得出不等式的解集是关键10(4.00分)(2018铜仁市)计算+的值为()ABCD【分析】直接利用分数的性质将原式变形进而得出答案【解答】解:原式=+=1+=1=故选:B【点评】此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键二、填空题:(本大题共8个小题,每小题4分,共32分)11(4.00分)(2018铜仁市)分式方程=4的解是x=9【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【解
17、答】解:去分母得:3x1=4x+8,解得:x=9,经检验x=9是分式方程的解,故答案为:9【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验12(4.00分)(2018铜仁市)因式分解:a3ab2=a(a+b)(ab)【分析】观察原式a3ab2,找到公因式a,提出公因式后发现a2b2是平方差公式,利用平方差公式继续分解可得【解答】解:a3ab2=a(a2b2)=a(a+b)(ab)【点评】本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式本题考点:因式分解(提取公因式法、应用公式法)13(4.00分)(2018铜仁市)一元一次不等式组的解集为x1【分析】先求
18、出不等式组中每一个不等式的解集,再求出它们的公共部分即可【解答】解:,由得:x1,由得:x2,所以不等式组的解集为:x1故答案为x1【点评】主要考查了解一元一次不等式组,解题的关键是熟练掌握解不等式的一般步骤和确定不等式组解集的公共部分14(4.00分)(2018铜仁市)如图,mn,1=110,2=100,则3=150【分析】两直线平行,同旁内角互补,然后根据三角形内角和为180即可解答【解答】解:如图,mn,1=110,4=70,2=100,5=80,6=18045=30,3=1806=150,故答案为:150【点评】本题主要考查平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的
19、关系得到角之间的数量关系,从而达到解决问题的目的15(4.00分)(2018铜仁市)小米的爸爸为了了解她的数学成绩情况,现从中随机抽取他的三次数学考试成绩,分别是87,93,90,则三次数学成绩的方差是6【分析】根据题目中的数据可以求得相应的平均数,从而可以求得相应的方差,本题得以解决【解答】解:,=6,故答案为:6【点评】本题考查方差,解答本题的关键是明确方差的计算方法16(4.00分)(2018铜仁市)定义新运算:ab=a2+b,例如32=32+2=11,已知4x=20,则x=4【分析】根据新运算的定义,可得出关于x的一元一次方程,解之即可得出x的值【解答】解:4x=42+x=20,x=4
20、故答案为:4【点评】本题考查了有理数的混合运算以及解一元一次方程,依照新运算的定义找出关于x的一元一次方程是解题的关键17(4.00分)(2018铜仁市)在直角三角形ABC中,ACB=90,D、E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分BCE,BC=2,则AB=4【分析】由CE所在直线垂直平分线段AD可得出CE平分ACD,进而可得出ACE=DCE,由CD平分BCE利用角平分线的性质可得出DCE=DCB,结合ACB=90可求出ACE、A的度数,再利用余弦的定义结合特殊角的三角函数值,即可求出AB的长度【解答】解:CE所在直线垂直平分线段AD,CE平分ACD,ACE=DCECD平分
21、BCE,DCE=DCBACB=90,ACE=ACB=30,A=60,AB=4故答案为:4【点评】本题考查了线段垂直平分线的性质、角平分线的性质以及特殊角的三角函数值,通过角的计算找出A=60是解题的关键18(4.00分)(2018铜仁市)已知在平面直角坐标系中有两点A(0,1),B(1,0),动点P在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为(1,2)或(2,1)【分析】由三角形三边关系知|PAPB|AB知直线AB与双曲线y=的交点即为所求点P,据此先求出直线AB解析式,继而联立反比例函数解析式求得点P的坐标【解答】解:如图,设直线AB的解析式为y=kx+
22、b,将A(1,0)、B(0,1)代入,得:,解得:,直线AB的解析式为y=x1,直线AB与双曲线y=的交点即为所求点P,此时|PAPB|=AB,即线段PA与线段PB之差的绝对值取得最大值,由可得或,点P的坐标为(1,2)或(2,1),故答案为:(1,2)或(2,1)【点评】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据三角形三边关系得出点P的位置三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19(10.00分)(2018铜仁市)(1)计算:4cos60(3.14)0()1(2)先化简,再求值:(1),其中x=2
23、【分析】(1)先计算立方根、代入三角函数值、计算零指数幂和负整数指数幂,再分别计算乘法和加减运算可得;(2)先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得【解答】解:(1)原式=2412=2212=3;(2)原式=()=,当x=2时,原式=2【点评】本题主要考查分式的化简求值与实数的混合运算,解题的关键是掌握立方根、零指数幂和负整数指数幂及分式混合运算顺序和运算法则20(10.00分)(2018铜仁市)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AEBF【分析】可证明ACEBDF,得出A=B,即可得出AEBF;【解答】证明:AD=BC
24、,AC=BD,在ACE和BDF中,ACEBDF(SSS)A=B,AEBF;【点评】本题考查了全等三角形的判定及性质以及平行线的判定问题,关键是SSS证明ACEBDF21(10.00分)(2018铜仁市)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列
25、表的方法求出所选两位同学恰好是一男一女同学的概率【分析】(1)由B类人数及其所占百分比求得总人数,再用总人数分别乘以A、C类别对应百分比求得其人数,据此结合条形图进一步得出答案;(2)画树状图列出所有等可能结果,从中找到所选两位同学恰好是一男一女同学的结果数,利用概率公式求解可得【解答】解:(1)被调查的总人数为(7+5)60%=20人,A类别人数为2015%=3人、C类别人数为20(115%60%10%)=3,则A类男生人数为31=2、C类女生人数为31=2,补全图形如下:(2)画树状图得:共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,所选两位同学恰好是一男一女
26、同学的概率为【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的知识用到的知识点为:概率=所求情况数与总情况数之比22(10.00分)(2018铜仁市)如图,有一铁塔AB,为了测量其高度,在水平面选取C,D两点,在点C处测得A的仰角为45,距点C的10米D处测得A的仰角为60,且C、D、B在同一水平直线上,求铁塔AB的高度(结果精确到0.1米,1.732)【分析】根据AB和ADB、AB和ACB可以求得DB、CB的长度,根据CD=CBDB可以求出AB的长度,即可解题【解答】解:在RtADB中,DB=AB,RtACB中,CB=AB,CD=CBDB,AB=23.7(米)答:电视塔AB
27、的高度约23.7米【点评】本题考查了特殊角的三角函数值,考查了三角函数在直角三角形中的应用,本题中求DB、CB的长度是解题的关键四、(本大题满分12分)23(12.00分)(2018铜仁市)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用【分析】(1)设甲种办公桌每
28、张x元,乙种办公桌每张y元,根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数=24000、10把甲种桌子钱数5把乙种桌子钱数+多出5张桌子对应椅子的钱数=2000”列方程组求解可得;(2)设甲种办公桌购买a张,则购买乙种办公桌(40a)张,购买的总费用为y,根据“总费用=甲种桌子总钱数+乙种桌子总钱数+所有椅子的总钱数”得出函数解析式,再由“甲种办公桌数量不多于乙种办公桌数量的3倍”得出自变量a的取值范围,继而利用一次函数的性质求解可得【解答】解:(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据题意,得:,解得:,答:甲种办公桌每张400元,乙种办公桌每张600元;(2)设甲种办公桌购
29、买a张,则购买乙种办公桌(40a)张,购买的总费用为y,则y=400a+600(40a)+240100=200a+32000,a3(40a),a30,2000,y随a的增大而减小,当a=30时,y取得最小值,最小值为26000元【点评】本题主要考查二元一次方程组和一元一次不等式及一次函数的应用,解题的关键是理解题意找到题目蕴含的相等关系,并据此列出方程和函数解析式,特别注意不能忽略每张桌子配套的椅子所产生的费用五、(本大题满分12分)24(12.00分)(2018铜仁市)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作O交AB于点D,交AC于点G,直线DF是O的切线,D为切点,
30、交CB的延长线于点E(1)求证:DFAC;(2)求tanE的值【分析】(1)连接OC,CD,根据圆周角定理得BDC=90,由等腰三角形三线合一的性质得:D为AB的中点,所以OD是中位线,由三角形中位线性质得:ODAC,根据切线的性质可得结论;(2)如图,连接BG,先证明EFBG,则CBG=E,求CBG的正切即可【解答】(1)证明:如图,连接OC,CD,BC是O的直径,BDC=90,CDAB,AC=BC,AD=BD,OB=OC,OD是ABC的中位线ODAC,DF为O的切线,ODDF,DFAC;(2)解:如图,连接BG,BC是O的直径,BGC=90,EFC=90=BGC,EFBG,CBG=E,Rt
31、BDC中,BD=3,BC=5,CD=4,SABC=,64=5BG,BG=,由勾股定理得:CG=,tanCBG=tanE=【点评】本题考查了切线的性质、等腰三角形的性质、平行线的判定和性质及勾股定理的应用;把所求角的正切进行转移是基本思路,利用面积法求BG的长是解决本题的难点六、(本大题满分14分)25(14.00分)(2018铜仁市)如图,已知抛物线经过点A(1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在
32、x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由【分析】(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=x2,则Q(m,m2+m+2)、M(m,m2),由QMDF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知ODB=QMB,故分DOB=MBQ=90,利用DOBMBQ得=,再证MBQBPQ得=,即=,解之即可得此时m的值;BQM=90,此时点Q与点A重合,BODBQM,易得点Q坐标【解答】解
33、:(1)由抛物线过点A(1,0)、B(4,0)可设解析式为y=a(x+1)(x4),将点C(0,2)代入,得:4a=2,解得:a=,则抛物线解析式为y=(x+1)(x4)=x2+x+2;(2)由题意知点D坐标为(0,2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,2)代入,得:,解得:,直线BD解析式为y=x2,QMx轴,P(m,0),Q(m,m2+m+2)、M(m,m2),则QM=m2+m+2(m2)=m2+m+4,F(0,)、D(0,2),DF=,QMDF,当m2+m+4=时,四边形DMQF是平行四边形,解得:m=1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3
34、)如图所示:QMDF,ODB=QMB,分以下两种情况:当DOB=MBQ=90时,DOBMBQ,则=,MBQ=90,MBP+PBQ=90,MPB=BPQ=90,MBP+BMP=90,BMP=PBQ,MBQBPQ,=,即=,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,m=3,点Q的坐标为(3,2);当BQM=90时,此时点Q与点A重合,BODBQM,此时m=1,点Q的坐标为(1,0);综上,点Q的坐标为(3,2)或(1,0)时,以点B、Q、M为顶点的三角形与BOD相似【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用第26页(共26页)