1、第8讲 立体几何中的向量方法(二)一、选择题1两平行平面,分别经过坐标原点O和点A(2,1,1),且两平面的一个法向量n(1,0,1),则两平面间的距离是()A. B. C. D3解析 两平面的一个单位法向量n0,故两平面间的距离d|n0|.答案B2已知向量m,n分别是直线l和平面的方向向量、法向量,若cosm,n,则l与所成的角为 ()A30 B60 C120 D150解析设l与所成的角为,则sin |cosm,n|,30.答案A3长方体ABCDA1B1C1D1中,ABAA12,AD1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为 ()A. B. C. D.解析建立坐标系如图,则
2、A(1,0,0),E(0,2,1),B(1,2,0),C1(0,2,2)(1,0,2),(1,2,1),cos,.所以异面直线BC1与AE所成角的余弦值为.答案B4已知直二面角l,点A,ACl,C为垂足,点B,BDl,D为垂足,若AB2,ACBD1,则CD()A2 B. C. D1解析如图,建立直角坐标系Dxyz,由已知条件B(0,0,1),A(1,t,0)(t0),由AB2解得t.答案C5如图,在四面体ABCD中,AB1,AD2,BC3,CD2.ABCDCB,则二面角ABCD的大小为 ()A.B.C.D.解析二面角ABCD的大小等于AB与CD所成角的大小.而22222|cos ,即12149
3、22cos,cos,AB与CD所成角为,即二面角ABCD的大小为.故选B.答案B6如图,在直三棱柱ABCA1B1C1中,ACB90,2ACAA1BC2.若二面角B1DCC1的大小为60,则AD的长为()A. B.C2 D.解析 如图,以C为坐标原点,CA,CB,CC1所在的直线分别为x轴,y轴,z 轴建立空间直角坐标系,则C(0,0,0),A(1,0,0),B1(0,2,2),C1(0,0,2),D(1,0,1)设ADa,则D点坐标为(1,0,a),(1,0,a),(0,2,2),设平面B1CD的一个法向量为m(x,y,z)则,令z1,得m(a,1,1),又平面C1DC的一个法向量为n(0,1
4、,0),则由cos60,得,即a,故AD.答案 A二、填空题7若平面的一个法向量为n(4,1,1),直线l的一个方向向量为a(2,3,3),则l与所成角的正弦值为_解析cosn,a.又l与所成角记为,即sin |cosn,a|.答案.8若向量a(1,2),b(2,1,2)且a与b的夹角的余弦值为,则_.解析由已知得,8 3(6),解得2或.答案2或9已知点E、F分别在正方体ABCDA1B1C1D1的棱BB1,CC1上,且B1E2EB,CF2FC1,则面AEF与面ABC所成的二面角的正切值为_解析如图,建立直角坐标系Dxyz,设DA1由已知条件A(1,0,0),E,F,设平面AEF的法向量为n(
5、x,y,z),面AEF与面ABC所成的二面角为,由得令y1,z3,x1,则n(1,1,3)平面ABC的法向量为m(0,0,1)cos cosn,m,tan .答案10在三棱锥OABC中,三条棱OA,OB,OC两两垂直,且OAOBOC,M是AB边的中点,则OM与平面ABC所成角的正切值是_解析如图所示建立空间直角坐标系,设OAOBOC1,则A(1,0,0),B(0,1,0),C(0,0,1),M,故(1,1,0),(1,0,1),.设平面ABC的法向量为n(x,y,z),则由得令x1,得n(1,1,1)故cosn,所以OM与平面ABC所成角的正弦值为,其正切值为.答案三、解答题11如图,四面体A
6、BCD中,AB、BC、BD两两垂直,ABBCBD4,E、F分别为棱BC、AD的中点(1)求异面直线AB与EF所成角的余弦值;(2)求E到平面ACD的距离;(3)求EF与平面ACD所成角的正弦值解如图,分别以直线BC、BD、BA为x、y、z轴建立空间直角坐标系,则各相关点的坐标为A(0,0,4)、C(4,0,0)、D(0,4,0),E(2,0,0)、F(0,2,2)(1)(0,0,4),(2,2,2),|cos,|,异面直线AB与EF所成角的余弦值为.(2)设平面ACD的一个法向量为n(x,y,1),则(4,0,4),(4,4,0),xy1,n(1,1,1,)F平面ACD,(2,2,2),E到平
7、面ACD的距离为d.(3)EF与平面ACD所成角的正弦值为|cosn,|12如图,在底面为直角梯形的四棱锥PABCD中,ADBC,ABC90,PA平面ABCD,PA3,AD2,AB2,BC6.(1)求证:BD平面PAC;(2)求二面角PBDA的大小(1)证明如图,建立空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,6,0),D(0,2,0),P(0,0,3),(0,0,3),(2,6,0),(2,2,0)0,0.BDAP,BDAC.又PAACA,BD面PAC.(2)解设平面ABD的法向量为m(0,0,1),设平面PBD的法向量为n(x,y,z),则n0,n0.(2,0,3),解得
8、令x,则n(,3,2),cosm,n.二面角PBDA的大小为60.13如图,直三棱柱ABCA1B1C1中,ACBCAA1,D是棱AA1的中点,DC1BD.(1)证明:DC1BC.(2)求二面角A1BDC1的大小(1)证明由题设知,三棱柱的侧面为矩形由于D为AA1的中点,故DCDC1.又ACAA1,可得DCDC2CC,所以DC1DC.而DC1BD,DCBDD,所以DC1平面BCD.因为BC平面BCD,所以DC1BC.(2)解由(1)知BCDC1,且BCCC1,则BC平面ACC1A1,所以CA,CB,CC1两两相互垂直以C为坐标原点,的方向为x轴的正方向,|为单位长,建立如图所示的空间直角坐标系
9、Cxyz.由题意知A1(1,0,2),B(0,1,0),D(1,0,1),C1(0,0,2)则(0,0,1),(1,1,1),(1,0,1)设n(x,y,z)是平面A1B1BD的法向量,则即可取n(1,1,0)同理,设m(x,y,z)是平面C1BD的法向量,则即可取m(1,2,1)从而cosn,m.故二面角A1BDC1的大小为30.14如图,已知AB平面ACD,DE平面ACD,ACD为等边三角形,ADDE2AB,F为CD的中点(1)求证:AF平面BCE;(2)求证:平面BCE平面CDE;(3)求直线BF和平面BCE所成角的正弦值解 方法一:(1)证法一:取CE的中点G,连接FG、BG.F为CD
10、的中点,GFDE且GFDE,AB平面ACD,DE平面ACD,ABDE,GFAB.又ABDE,GFAB.又DE2AB,四边形GFAB为平行四边形,则AFBG.AF平面BCE,BG平面BCE,AF平面BCE.证法二:取DE的中点M,连接AM、FM,F为CD的中点,FMCE.AB平面ACD,DE平面ACD,DEAB.又ABDEME,四边形ABEM为平行四边形,则AMBE.FM、AM平面BCE,CE、BE平面BCE,FM平面BCE,AM平面BCE.又FMAMM,平面AFM平面BCE.AF平面AFM,AF平面BCE.(2)证明:ACD为等边三角形,F为CD的中点,AFCD.DE平面ACD,AF平面ACD
11、,DEAF.又CDDED,故AF平面CDE.BGAF,BG平面CDE.BG平面BCE,平面BCE平面CDE.(3)在平面CDE内,过F作FHCE于H,连接BH,平面BCE平面CDE,FH平面BCE.FBH为BF和平面BCE所成的角设ADDE2AB2a,则FHCFsin45a,BF2a,在RtFHB中,sinFBH.直线BF和平面BCE所成角的正弦值为.方法二:设ADDE2AB2a,建立如图所示的坐标系Axyz,则A(0,0,0),C(2a,0,0),B(0,0,a),D(a,a,0),E(a,a,2a)F为CD的中点,F.(1)证明:,(a,a,a),(2a,0,a),(),AF平面BCE,AF平面BCE.(2)证明:,(a,a,0),(0,0,2a),0,0,.平面CDE,又AF平面BCE,平面BCE平面CDE.(3)设平面BCE的法向量为n(x,y,z),由n0,n0可得xyz0,2xz0,取n(1,2)又,设BF和平面BCE所成的角为,则sin.直线BF和平面BCE所成角的正弦值为.