库塔格式注意到就是改进的欧拉法课件.ppt

上传人(卖家):三亚风情 文档编号:2912299 上传时间:2022-06-10 格式:PPT 页数:18 大小:950KB
下载 相关 举报
库塔格式注意到就是改进的欧拉法课件.ppt_第1页
第1页 / 共18页
库塔格式注意到就是改进的欧拉法课件.ppt_第2页
第2页 / 共18页
库塔格式注意到就是改进的欧拉法课件.ppt_第3页
第3页 / 共18页
库塔格式注意到就是改进的欧拉法课件.ppt_第4页
第4页 / 共18页
库塔格式注意到就是改进的欧拉法课件.ppt_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、第六章第六章 常微分方程数值解常微分方程数值解/* Numerical Methods for Ordinary Differential Equations */ 考虑考虑一阶一阶常微分方程的常微分方程的初值问题初值问题 /* Initial-Value Problem */: 0)(,),(yaybaxyxfdxdy只要只要 f (x, y) 在在a, b R1 上连续,且关于上连续,且关于 y 满足满足 Lipschitz 条条件件,即存在与,即存在与 x, y 无关的常数无关的常数 L 使使对任意定义在对任意定义在 a, b 上的上的 y1(x) 和和 y2(x) 都成立,则上述都成立

2、,则上述IVP存存在唯一解在唯一解。| ),(),(|2121yyLyxfyxf 要计算出解函数要计算出解函数 y(x) 在一系列节点在一系列节点 a = x0 x1 xn= b 处的近似值处的近似值),., 1()(nixyyii 节点间距节点间距 为步长,通常采用为步长,通常采用等距节点等距节点,即取即取 hi = h (常数常数)。) 1,., 0(1 nixxhiii1 欧拉方法欧拉方法 /* Eulers Method */ 欧拉公式:欧拉公式:x0 x1向前差商近似导数向前差商近似导数hxyxyxy)()()(010 ),()()()(000001yxfhyxyhxyxy 1y记为

3、记为)1,., 0(),(1 niyxfhyyiiii定义定义在假设在假设 yi = y(xi),即第,即第 i 步计算是精确的前提下,考步计算是精确的前提下,考虑的截断误差虑的截断误差 Ri = y(xi+1) yi+1 称为称为局部截断误差局部截断误差 /* local truncation error */。定义定义若某算法的局部截断误差为若某算法的局部截断误差为O(hp+1),则称该算法有,则称该算法有p 阶精度。阶精度。 欧拉法的局部截断误差:欧拉法的局部截断误差:),()()()()()(32112iiiihiiiiiyxhfyhOxyxyhxyyxyR )()(322hOxyih

4、 欧拉法具有欧拉法具有 1 阶精度。阶精度。Ri 的的主项主项/* leading term */亦称为亦称为欧拉折线法欧拉折线法 /* Eulers polygonal arc method*/ 欧拉公式的改进:欧拉公式的改进: 隐式欧拉法隐式欧拉法 /* implicit Euler method */向后差商近似导数向后差商近似导数hxyxyxy)()()(011 x0 x1)(,()(1101xyxfhyxy )1,., 0(),(111 niyxfhyyiiii由于未知数由于未知数 yi+1 同时出现在等式的两边,不能直接得到,故同时出现在等式的两边,不能直接得到,故称为称为隐式隐式

5、 /* implicit */ 欧拉公式,而前者称为欧拉公式,而前者称为显式显式 /* explicit */ 欧拉公式。欧拉公式。一般先用显式计算一个初值,再一般先用显式计算一个初值,再迭代迭代求解。求解。 隐式隐式欧拉法的局部截断误差:欧拉法的局部截断误差:11)(iiiyxyR)()(322hOxyih 即隐式欧拉公式具有即隐式欧拉公式具有 1 阶精度。阶精度。 Hey! Isnt the leading term of the local truncation error of Eulers method ? Seems that we can make a good use of i

6、t )(22ihxy 梯形公式梯形公式 /* trapezoid formula */ 显、隐式两种算法的显、隐式两种算法的平均平均)1,., 0(),(),(2111 niyxfyxfhyyiiiiii注:注:的确有局部截断误差的确有局部截断误差 , 即梯形公式具有即梯形公式具有2 阶精度,比欧拉方法有了进步。阶精度,比欧拉方法有了进步。但注意到该公式是但注意到该公式是隐式隐式公式,计算时不得不用到公式,计算时不得不用到迭代法,其迭代收敛性与欧拉公式相似。迭代法,其迭代收敛性与欧拉公式相似。)()(311hOyxyRiii 中点欧拉公式中点欧拉公式 /* midpoint formula *

7、/中心差商近似导数中心差商近似导数hxyxyxy2)()()(021 x0 x2x1)(,(2)()(1102xyxfhxyxy 1,., 1),(211 niyxfhyyiiii假设假设 ,则可以导出,则可以导出即中点公式具有即中点公式具有 2 阶精度。阶精度。)(),(11iiiixyyxyy )()(311hOyxyRiii 需要需要2个初值个初值 y0和和 y1来启动递推来启动递推过程,这样的算法称为过程,这样的算法称为双步法双步法 /* double-step method */,而前面的三种算法都是,而前面的三种算法都是单步法单步法 /* single-step method */

8、。方方 法法 显式欧拉显式欧拉隐式欧拉隐式欧拉梯形公式梯形公式中点公式中点公式简单简单精度低精度低稳定性最好稳定性最好精度低精度低, 计算量大计算量大精度提高精度提高计算量大计算量大精度提高精度提高, 显式显式多一个初值多一个初值, 可能影响精度可能影响精度 Cant you give me a formula with all the advantages yet without any of the disadvantages? Do you think it possible? Well, call me greedy OK, lets make it possible. 改进欧拉法改进

9、欧拉法 /* modified Eulers method */Step 1: 先用先用显式显式欧拉公式作欧拉公式作预测预测,算出,算出),(1iiiiyxfhyy Step 2: 再将再将 代入代入隐式隐式梯形公式的右边作梯形公式的右边作校正校正,得到,得到1 iy),(),(2111 iiiiiiyxfyxfhyy注:注:此法亦称为此法亦称为预测预测-校正法校正法 /* predictor-corrector method */。可以证明该算法具有可以证明该算法具有 2 阶精度,同时可以看到它是个阶精度,同时可以看到它是个单单步步递推格式,比隐式公式的迭代求解过程递推格式,比隐式公式的迭代

10、求解过程简单简单。后面将。后面将看到,它的看到,它的稳定性高稳定性高于显式欧拉法。于显式欧拉法。 )1,., 0(),(,),(211 niyxfhyxfyxfhyyiiiiiiii2 龙格龙格 - 库塔法库塔法 /* Runge-Kutta Method */建立高精度的单步递推格式。建立高精度的单步递推格式。单步递推法的单步递推法的基本思想基本思想是从是从 ( xi , yi ) 点出发,以点出发,以某一斜某一斜率率沿直线达到沿直线达到 ( xi+1 , yi+1 ) 点。欧拉法及其各种变形所点。欧拉法及其各种变形所能达到的最高精度为能达到的最高精度为2阶阶。 考察改进的欧拉法,可以将其改

11、写为:考察改进的欧拉法,可以将其改写为:),(),(2121121211hKyhxfKyxfKKKhyyiiiiii 斜率斜率一定取一定取K1 K2 的的平均值平均值吗?吗?步长一定是一个步长一定是一个h 吗?吗?首先希望能确定系数首先希望能确定系数 1、 2、p,使得到的算法格式有,使得到的算法格式有2阶阶精度,即在精度,即在 的前提假设下,使得的前提假设下,使得 )(iixyy )()(311hOyxyRiii Step 1: 将将 K2 在在 ( xi , yi ) 点作点作 Taylor 展开展开)(),(),(),(),(2112hOyxfphKyxphfyxfphKyphxfKii

12、yiixiiii )()()(2hOxyphxyii 将改进欧拉法推广为:将改进欧拉法推广为:),(),(12122111phKyphxfKyxfKKKhyyiiiiii ),(),(),(),(),(),()(yxfyxfyxfdxdyyxfyxfyxfdxdxyyxyx Step 2: 将将 K2 代入第代入第1式,得到式,得到 )()()()()()()()(322212211hOxyphxyhyhOxyphxyxyhyyiiiiiiii Step 3: 将将 yi+1 与与 y( xi+1 ) 在在 xi 点的点的泰勒泰勒展开作比较展开作比较)()()()(322211hOxyphxy

13、hyyiiii )()(2)()()(321hOxyhxyhxyxyiiii 要求要求 ,则必须有:,则必须有:)()(311hOyxyRiii21,1221 p 这里有这里有 个未知个未知数,数, 个方程。个方程。32存在存在无穷多个解无穷多个解。所有满足上式的格式统称为。所有满足上式的格式统称为2阶龙格阶龙格 - 库库塔格式塔格式。21, 121 p注意到,注意到, 就是改进的欧拉法。就是改进的欧拉法。 Q: 为获得更高的精度,应该如何进一步推广?为获得更高的精度,应该如何进一步推广?其中其中 i ( i = 1, , m ), i ( i = 2, , m ) 和和 ij ( i = 2

14、, , m; j = 1, , i 1 ) 均为待定均为待定系数,确定这些系数的系数,确定这些系数的步骤与前面相似。步骤与前面相似。 ).,(.),(),(),(.1122112321313312122122111 mm mmmmimiiiiiimmiihKhKhKyhxfKhKhKyhxfKhKyhxfKyxfKKKKhyy 最常用为四级最常用为四级4阶阶经典龙格经典龙格-库塔法库塔法 /* Classical Runge-Kutta Method */ :),(),(),(),()22(34222312221432161hKyhxfKKyxfKKyxfKyxfKKKKKyyiihihihi

15、hiiihii 注:注: 龙格龙格-库塔法库塔法的主要运算在于计算的主要运算在于计算 Ki 的值,即计算的值,即计算 f 的的值。值。Butcher 于于1965年给出了计算量与可达到的最高精年给出了计算量与可达到的最高精度阶数的关系:度阶数的关系:753可达到的最高精度可达到的最高精度642每步须算每步须算Ki 的个数的个数)(2hO)(3hO)(4hO)(5hO)(6hO)(4hO)(2nhO8n 由于龙格由于龙格-库塔法的导出基于泰勒展开,故精度主要受库塔法的导出基于泰勒展开,故精度主要受解函数的光滑性影响。对于光滑性不太好的解,最好解函数的光滑性影响。对于光滑性不太好的解,最好采用采用

16、低阶算法低阶算法而将步长而将步长h 取小取小。3 收敛性与稳定性收敛性与稳定性 /* Convergency and Stability */ 收敛性收敛性 /* Convergency */定义定义 若某算法对于任意固定的若某算法对于任意固定的 x = xi = x0 + i h,当,当 h0 ( 同时同时 i ) 时有时有 yi y( xi ),则称该算法是,则称该算法是收敛收敛的。的。 例:例:就初值问题就初值问题 考察欧拉显式格式的收敛性。考察欧拉显式格式的收敛性。 0)0(yyyy 解:解:该问题的精确解为该问题的精确解为 xeyxy 0)( 欧拉公式为欧拉公式为iiiiyhyhyy

17、)1 (1 0)1 (yhyii 对任意固定的对任意固定的 x = xi = i h ,有,有iixhhxihyhyy )1()1(/10/0 ehhh /10)1(lim)(0ixxyeyi 稳定性稳定性 /* Stability */例:例:考察初值问题考察初值问题 在区间在区间0, 0.5上的解。上的解。分别用欧拉显、隐式格式和改进的欧拉格式计算数值解。分别用欧拉显、隐式格式和改进的欧拉格式计算数值解。 1)0()(30)(yxyxy0.00.10.20.30.40.5精确解精确解改进欧拉法改进欧拉法 欧欧拉隐式拉隐式欧拉显式欧拉显式 节点节点 xixey30 1.0000 2.0000

18、 4.0000 8.0000 1.6000 101 3.2000 101 1.00002.5000 10 1 6.2500 10 21.5625 10 23.9063 10 39.7656 10 41.00002.50006.25001.5626 1013.9063 1019.7656 1011.00004.9787 10 22.4788 10 31.2341 10 46.1442 10 63.0590 10 7What is wrong ?! An Engineer complains: Math theorems are so unstable that a small perturbat

19、ion on the conditions will cause a crash on the conclusions!定义定义若某算法在计算过程中任一步产生的误差在以后的计若某算法在计算过程中任一步产生的误差在以后的计算中都算中都逐步衰减逐步衰减,则称该算法是,则称该算法是绝对稳定的绝对稳定的 /*absolutely stable */。一般分析时为简单起见,只考虑一般分析时为简单起见,只考虑试验方程试验方程 /* test equation */yy 常数,可以常数,可以是复数是复数当步长取为当步长取为 h 时,将某算法应用于上式,并假设只在初值时,将某算法应用于上式,并假设只在初值产生

20、误差产生误差 ,则若此误差以后逐步衰减,就称该,则若此误差以后逐步衰减,就称该算法相对于算法相对于 绝对稳定绝对稳定, 的全体构成的全体构成绝对稳定区域绝对稳定区域。我们称我们称算法算法A 比算法比算法B 稳定稳定,就是指,就是指 A 的绝对稳定区域比的绝对稳定区域比 B 的的大大。000yy h h h例:例:考察显式欧拉法考察显式欧拉法011)1(yhyhyyiiii 000yy 011)1(yhyii 01111)1( iiiihyy由此可见,要保证初始误差由此可见,要保证初始误差 0 以后逐步衰减,以后逐步衰减,必须满足:必须满足:hh 1|1| h0-1-2ReImg例:例:考察隐式

21、欧拉法考察隐式欧拉法11 iiiyhyy iiyhy 11101111 iih可见绝对稳定区域为:可见绝对稳定区域为:1|1| h210ReImg注:注:一般来说,隐式欧拉法的绝对稳定性比同阶的显式一般来说,隐式欧拉法的绝对稳定性比同阶的显式法的好。法的好。例:例:隐式龙格隐式龙格-库塔法库塔法 ),., 1().,(.11111mjhKhKyhxfKKKhyymmjjijijmmii 而而显式显式 1 4 阶方法的绝对稳定阶方法的绝对稳定区域为区域为 )2,2(1111KhyhxfKhKyyiiii其中其中2阶方法阶方法 的绝对稳定区域为的绝对稳定区域为0ReImgk=1k=2k=3k=4-

22、1-2-3-123ReImg无条件稳定无条件稳定期末考试:期末考试:2. 第三章第三章 非线性方程求根非线性方程求根 :二分法、迭代法、牛顿法和弦截法:二分法、迭代法、牛顿法和弦截法要求:根的存在,公式,收敛性条件的判别要求:根的存在,公式,收敛性条件的判别1. 第二章第二章 解线性方程组的直接法:掌握解线性方程组的直接法:掌握Gauss消元法进行到底消元法进行到底 的条件,矩阵三角分解定理的条件和结论,向量和的条件,矩阵三角分解定理的条件和结论,向量和 矩阵的范数,方程组的条件数与病态方程组的求解矩阵的范数,方程组的条件数与病态方程组的求解解线性方程组的迭代法:雅可比迭代法,高斯解线性方程组

23、的迭代法:雅可比迭代法,高斯-赛德尔赛德尔 迭代法;要求:求解公式,收敛条件。迭代法;要求:求解公式,收敛条件。4. 函数插值:拉格朗日插值,牛顿插值,埃米尔特插值函数插值:拉格朗日插值,牛顿插值,埃米尔特插值 要求:插值公式,余项公式要求:插值公式,余项公式 5. 数值积分:插值型求积公式(矩形、梯形、辛普生、数值积分:插值型求积公式(矩形、梯形、辛普生、 龙贝格)。公式和误差,代数精确度的概念。龙贝格)。公式和误差,代数精确度的概念。6. 常微分方程数值解:单步法(欧拉、改进欧拉,龙格常微分方程数值解:单步法(欧拉、改进欧拉,龙格- -库塔)库塔) 差分法。要求:求解公式和误差阶。差分法。要求:求解公式和误差阶。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(库塔格式注意到就是改进的欧拉法课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|