1、2022年浙江省嘉兴市中考数学试题满分:120分,考试时间:120分钟一、选择题(本题有10小题,每题3分,共30分)1若收入3元记为3,则支出2元记为()(A)2(B)1(C)1(D)22如图是由四个相同的小立方体搭成的几何体,它的主视图是()(A)(B)(C)(D)3计算a2a()(A)a(B)3a(C)2a2(D)a34如图,在O中,BOC30,点A在上,则BAC的度数为()(A)55(B)65(C)75(D)1305不等式3x12x的解在数轴上表示正确的是()(A)(B)(C)(D)6 “方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥如图,将边长为2cm
2、的正方形ABCD沿对角线BD方向平移1cm得到正方形ABCD,形成一个“方胜”图案,则点D,B之间的距离为()(A)1cm(B)2cm(C)(1)cm(D)(21)cm7A,B两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是()(A)且(B)且(C)且(D)且8“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为()(A)(B)(C)(D)9如图,在ABC中,ABAC8,点E,
3、F,G分别在边AB,BC,AC上,EFAC,GFAB,则四边形AEFG的周长是()(A)8(B)16(C)24(D)3210已知点A(a,b),B(4,c)在直线ykx3(k为常数,k0)上,若ab的最大值为9,则c的值为()(A)1(B)(C)2(D)二、填空题(本题有6小题,每题4分,共24分)11分解因式:m2112不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,则它是黑球的概率是13小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件三角形等腰三角形等边三角形直角三角形条件:ABAC条件:()条件:A90条件:A90
4、条件:ABAC14如图,在ABC中,ABC90,A60,直尺的一边与BC重合,另一边分别交AB,AC于点D,E点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为15某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别县挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N)若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(n1)倍,且钢梁保持水平,则弹簧秤读数为(N)(用含n,k的代数式表示)16如图,在扇形AOB中,点C,D在上,将沿弦CD折叠后恰好与OA,OB相切于点E,F. 已知AOB12
5、0,OA6,则的度数为,折痕CD的长为三、解答题(本题有8小题,第1719题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17(1)计算:(2)解方程:18小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,ACBD,OBOD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流小惠:证明:ACBD,OBOD,AC垂直平分BDABAD,CBCD,四边形ABCD是菱形小洁:这个题目还缺少条件,需要补充一个条件才能证明若赞同小惠的证法,请在第一个方框内打“”;若赞成小洁的说法,请你补充一个条件,并证明19设是一个两位数,其中a是十位
6、上的数字(1a9)例如,当a4时,表示的两位数是45(1)尝试:当a1时,1522251210025;当a2时,2526252310025;当a3时,3521225;(2)归纳:与100a(a1)25有怎样的大小关系?试说明理由(3)运用:若与100a的差为2525,求a的值206月13日,某港口的湖水高度y(cm)和时间x(h)的部分数据及函数图象如下:(数据来自某海洋研究所)(1)数学活动:根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象观察函数图象,当x4时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论(3)数学应用
7、:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?21小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知ADBE10cm,CDCE5cm,ADCD,BECE,DCE40(1)连结DE,求线段DE的长(2)求点A,B之间的距离(结果精确到0.1cm参考数据:sin200.34,cos200.94,tan200.36,sin400.64,cos400.77,tan400.84)22某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结
8、果描述如下:中小学生每周参加家庭劳动时间x(h)分为5组:第一组(0x0.5),第二组(0.5x1),第三组(1x1.5),第四组(1.5x2),第五组(x2)根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?(2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2,请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议23已知抛物线L1:ya(x1)24(a0)经过点A(1,0)(1)求抛物线L1的函数表达式(2)将抛物线L1向上平移m(m0)个单
9、位得到抛物线L2若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值(3)把抛物线L1向右平移n(n0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1y2,求n的取值范围图124小东在做九上课本123页习题:“1:也是一个很有趣的比已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB1:”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点小东称点P为线段AB的“趣点”(1)你赞同他的作法吗?请说明理由(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造DPE,使得DPECPB如图3,当点D运动到点A时,求CPE的度数如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CDAD),猜想:点N是否为线段ME的“趣点”?并说明理由图2图3图4