1、第一讲:正交试验第二讲:方差分析(ANOVA)第三讲:正交试验的方差分析第四讲:稳健设计第五讲:可靠性设计第一节:实验设计的意义及其发展过程第二节:正交试验、正交表及其用法第三节:混合水平的正交试验设计第四节:有交互作用的正交试验设计Design of Experiment为什么要进行试验设计?这里有27个球, 其中有且只有一个球质量为9克, 其它26个都为10克。给你一架天平,请找出重为9克的那个球。请问,你至少要称几次?这里有9框球(每框100个), 其中有且只有一框里的球质量全为9克, 其它8框里的球都为10克。给你一架天平,请找出里面的球重为9克的那个框。请问,你至少要称几次?Desi
2、gn of Experiment为什么要进行试验设计?实验设计的意义:应用数理统计学的基本知识,讨论如何合理地安排试验、取得数据,然后进行综合科学分析,从而尽快获得最优组合方案。在工程学领域是改进制造过程性能的非常重要的手段。在开发新工序中亦有着广泛的应用。在工序开发的早期应用实验设计方法能得出以下成果:1. 提高产量;2. 减少变异性,与额定值或目标值更为一致;3. 减少开发时间;4. 减少总成本;通過實驗通過實驗進行优化設計進行优化設計实验设计的发展过程:试验设计始于20世纪20年代,其发展过程大致可分为三个阶段:1. 早期的方差分析法: 20世纪20年代由英国生物统计学 家、数学家费歇(
3、R.A.Fisher)提出的,开始主要应用于农业、生物学、遗传学方面,取得了丰硕成果。二战期间,英、美采用这种方法在工业生产中取得显著效果;2. 传统的正交试验设计法:以日本的田口玄一为代表;3. 信噪比试验设计与三阶段设计:1957年,田口玄一提出信噪比 设计法和产品的三阶段设计法。他把信噪比设计和正交表设计、方 差分析相结合,开辟了更为重要、更为广泛的应用领域。为什么要进行正交试验:在实际生产中,影响试验的因素往往是多方面的,我们要考察各因素对试验影响的情况。在多因素、多水平试验中,如果对每个因素的每个水平都互相搭配进行全面试验,需要做的试验次数就会很多.比如对3因素7水平的试验,如果3因
4、素的各个水平都互相搭配进行全面试验,就要做73=343次试验,对6因素7水平,进行全面试验要做76=117649次试验。这显然是不经济的。我们应当在不影响试验效果的前提下,尽可能地减少试验次数。正交设计就是解决这个问题的有效方法。正交设计的主要工具是正交表。右图是一個比较典型的正交表.“L”L”表示此为正交表, “8”“8”表示試驗次數, “2”“2”表示兩水平, “7”“7”表示試驗最多可以有7個因素 (包括單個因素及其交互作用).正交表:正交表的表示方法:一般的正交表记为Ln(mk),n是表的行数, 也就是要安排的试验数;k 是表中的列数,表示因素的个数;m 是各因素的水平数;常见的正交表
5、:2水平的有 L4(23), L8(27), L12(211), L16(215)等;3水平的有 L9(34), L27(313)等;4水平的有 L15(45);5水平的有 L25(56);正交表的两条重要性质:1) 每列中不同数字出现的次数是相等的,如L9(34)中,每列中不同的 数字是1,2,3,它们各出现3次;2) 在任意两列中,将同一行的两个 数字看成一个有序数对,则每一数对出现的次数是相等的,如L9(34)中有序数对共有9个: (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), 它们各出现一次。所以,用正交表来
6、安排试验时,各因素的各种水平的搭配是均衡的,这是正交表的优点。例1:(单指标的分析方法)某炼铁厂为提高铁水温度,需要通过试验选择最好的生产方案经初步分析,主要有3个因素影响铁水温度,它们是焦比、风压和底焦高度, 每个因素都 考虑3个水平,具体情况见表。问对这3个因素的3个水平如何安排,才能获得最高的铁水温度?解:如果每个因素的每个水平都互相搭配着进行全面试验,必须做试验33=27次。现在我们使用L9(34)正交表来安排试验。我们按选定的9个试验进行试验,并将每次试验测得的铁水温度记录下来:为了便于分析计算,我们把这些温度值和正交表列在一起组成一个新表。另外,由于铁水温度数值较大,我们把每一个铁
7、水温度的值都减去1350,得到9个较小的数,这样使计算简单。分析表解释:K1这一行的3个数分别是因素A, B, C的第1水平所在的试验中对应的铁水温度之和;K2这一行的3个数分别是因素A, B, C的第2水平所在的试验中对应的铁水温度之和;K3这一行的3个数分别是因素A, B, C的第3水平所在的试验中对应的铁水温度之和;k1, k2, k3这3行的3 个数,分别是K1, K2, K3这3行中的3个数的平均值;极差是同一列中, k1, k2, k33个数中的最大者减去最小者所得的差。极差越大,说明这个因素的水平改变时对试验指标的影响越大。极差最大的那一列,就是那个因素的水平改变时对试验指标的影
8、响最大,那个因素就是我们要考虑的主要因素.通过分析可以得出:各因素对试验指标(铁水温度)的影响按大小次序应当是C (底焦高度) A (焦比) B (风压);最好的方案应当是C2A3B2。与此结果比较接近的是第9号试验。为了最终确定上面找出的试验方案是不是最好的,可以按这个方案再试验一次,并同第9号试验相比,取效果最佳的方案。例2:(多指标的分析方法- 综合平衡法)为提高某产品质量,要对生产该产品的原料进行配方试验。要检验3项指标:抗压强度、落下强度 和裂纹度,前2个指标越大越好,第3个指标越小越好。根据以往的经验,配方中有3个重要因素:水分、粒度和碱度。它们各有3个水平。试进行试验分析,找出最
9、好的配方方案。解:我们选用正交表L9(34)来安排试验。024681012789 0246810789 00.511.522.533.54789 02468101214164680246810121446800.511.522.533.5468024681012141.11.31.502468101.11.31.500.511.522.533.51.11.31.5分析:1) 粒度B对抗压强度和落下强度来讲,极差都是最大的,说明它是影响最大的因素,而且以取8为最好;对裂纹度来讲,粒度的极差不是最大,不是影响最大的因素,而且也以取8为最好;2) 碱度C对三个指标的极差都不是最大的,是次要的因素。对
10、抗压强度和裂纹度来讲,碱度取1.1最好;对落下强度,取1.3最好,但取1.1也不是太差,综合考虑碱度取1.1;3) 水分A对裂纹度来讲是最大的因素,以取9为最好;但对抗压强度和落下强度来讲,水分的极差都是最小的,是影响最小的因素。综合考虑水分取9;最后较好的试验方案是B3C1A2例3:(多指标的分析方法- 综合评分法)某厂生产一种化工产品,需要检验两下指标:核酸统一纯度和回收率,这两个指标都是越大越好。有影响的因素有4个,各有3个水平。试通过试验分析找出较好的方案解:这是4因素3水平的试验,可以选用正交表L9(34)。试验结果如表。第二节:正交试验、正交表及其用法分析:1) 根据综合评分的结果
11、,直观上第1号试验的分数最高,应进一步分析它是不是最好的试验方案;2) 通过直观分析法可以得知,最好的试验方案是A1B3C2D1。A,D 两个因素的极差都很大,是对试验影响较大的两个因素;3) 分析出来的最好方案,在已经做过的9个试验中是没有的。可以按这个方案再试验一次,看能不能得出比第一号试验更好的结果,从而确定出真正最好的试验方案;综合评分法是将多指标的问题,通过加权计算总分的方法化成一个综合评分法是将多指标的问题,通过加权计算总分的方法化成一个指标的问题,使对结果的分析计算都比较方便、简单。指标的问题,使对结果的分析计算都比较方便、简单。利用正交表进行试验的步骤:1) 明确试验目的,确定
12、要考核的试验指标;2) 根据试验目的,确定要考察的因素和各因素的水平;要通过对实际问题的具体分析选出主要因素,略去次要因素;3) 选用合适的正交表,安排试验计划;4) 根据安排的计划进行试验,测定各试验指标;5) 对试验结果进行计算分析,得出合理的结论;6)若最佳组合方案在试验中未出现,如果条件允许,应安排一次验证试验,进行确认。混合水平正交表及其用法:混合水平正交表就是各因素的水平数不完全相等的正交表。譬如:L8(41 x 24)就是一种混合水平的正交表。例4:(直接利用混合水平正交表)某农科站进行品种试验,共有4个因素:A(品种)、B(氮肥量)、C(氮、磷、钾比例)、D(规格)。因素A是4
13、水平的,另外3个因素是2水平的。试验指标是产量,数值越大越好。解:分析结果见下表。例5:(拟水平法)今有一试验,试验指标只有一个,它的数值越小越好,这个试验有4个因素,其中因素C是2水平的,其余3个因素都是3水平的,试安排试验。解:我们从第1、第2两个水平中选一个水平让它重复一次作为第3水平,这就叫虚拟水平。一般应根据实际经验,选取一个较好的水平。分析结果见下表。总结:拟水平法是将水平少的因素归入水平数多的正交表中的一种处理问题的方法。在没有合适的混合水平的正交表可用时,拟水平法是一种比较好的处理多因素混合水平试验的方法。它不仅可以对一个因素虚拟水平,也可以对多个因素虚拟水平。什么是交互作用:
14、在多因素试验中,各因素不仅各自独立地在起作用,而且各因素还经常联合起来起作用。也就是说,不仅各个因素的水平改变时对试验指标有影响,而且各因素的联合搭配对试验指标也有影响。这后一种影响就叫做因素的交互作用。因素A和因素B的交互作用记为A X B.交互作用表(以正交表L8(27)为例):用正交表安排有交互作用的试验时,我们把两个因素的交互作用当成一个新的因素来看,让它占有一列,叫交互作用列。例6:(水平数相同)我们用一个3因素2水平的有交互作用的例子来说明某产品的产量取决于3个因素A,B,C,每个因素都有两个水平。每两个因素之间都有交互作用,试验指标为产量,越高越好。具体如下:解:这是3因素2水平
15、的试验。3个因素A, B, C要占3列,它们之间的交互作用A x B, B x C, A x C 又占3列。可用正交表L8(27).分析:从极差大小看,影响最大的因素是C,以2水平为好;其次是AxB,以2水平为好,第3是因素A,以1水平为好,第4是因素B以1水平为好。列出A和B进行组合的几种效果表:从此表可知,A和B的最佳组合为A1B2。AxC 和 BxC的极差很小,对试验的影响很小,忽略不计。综合分析,最好的方案应是A1B2C2,这与试验4相吻合。1216973.527265.5BAAXB1. 按照正交试验(直观分析法)的原理,解决你实际工作中的一个问题,并总结成实验分析报告。2. 补充作业
16、(另附)第一节:问题的提出第二节:单因素试验的方差分析第三节:双因素试验的方差分析先看一个例子:考察温度对某一化工厂产品的得率的影响,选了五种不同的温度,同一温度做了三次试验,测得结果如下:要分析温度的变化对得率的影响从平均得率来看,温度对得率的影响?1) 同一温度下得率并不完全一样,产生这种差异的原因是由于试验过程中各种偶然性因素的干扰及测量误差等所致,这一类误差统称为试验误差;2) 两 种温度的得率在不同的试验中的倾向有所差别。如 65oC 与 70oC相比较,第一次65oC比70oC 好,而后二次70oC比65oC 好。产生这种矛盾的现象也是由于试验误差的干扰。由于试验误差的存在,对于不
17、同温度下得率的差异自然要提出疑问,这差异是试验误差造成的,还是温度的影响呢?1) 由于温度的不同引起得率的差异叫做条件变差; 例中的全部15个数据,参差不齐,它们的差异叫做总变差(或总离差)。产生总变差的原因一是试验误差,一是条件变差。2) 方差分析解决这类问题的思想是:a. 由数据的总变差中分出试验误差和条件变差,并赋予它们的数量表示;b. 用条件变差和试验误差在一定意义下进行比较,如两者相差不大,说明条件的变化对指标影响不大;反之,则说明条件的变化影响是很大的,不可忽视;c. 选择较好的工艺条件或确定进一步试验的方向;变差的数量表示:有n个参差不齐的数据 x1, x2, , xn, 它们之
18、间的差异称为变差。如何给变差一个数量表示呢?1) 一个最直观的想法是用这n个数中最大值与最小值之差,即极差来表达,用R记之;2) 变差平方和,以S记之。S是每个数据离平均值有多远的一个测度,它越大表示数据间的差异越大。21)(xxSniiniixnx11对变差平方和的进一步讨论:例:测得某高炉的六炉铁水含碳量为: 4.59,4.44,4.53,4.52,4.72,4.55,求其变差平方和。043484. 0)558. 455. 4()558. 472. 4()558. 452. 4()558. 453. 4()558. 444. 4()558. 459. 4(222222S558. 4635.
19、27)55. 472. 452. 453. 444. 459. 4(61x第一节:问题的提出对变差平方和的进一步讨论(2):我们看到S的计算是比较麻烦的,原因是计算x时有效位数增加了因而计算平方时工作量就大大增加。另外,在计算x时由于除不尽而四舍五入,在计算S时,累计误差较大。为此常用以下公式:043483. 0)55. 4.44. 459. 4(61)55. 4.44. 459. 4(2222S第一节:问题的提出自由度的提出:例2:在上例的基础上在同样的工艺条件下又测了四炉铁水,它们是:4.60, 4.42, 4.68, 4.54, 加上原来的六炉共十炉,求其变方和。559. 41059.4
20、5)54. 4.59. 4(61x第一节:问题的提出自由度的提出(2):平均数与过去的结果是相近的,但平方和是显著地变大了。我们要设法消除数据个数的多少给平方和带来的影响。一个直观的想法是用平方和除以相应的项数,但从数学理论上推知这不是一个最好的办法,而应把项数加以修正,这个修正的数就叫做自由度。第一节:问题的提出自由度的提出(3):设有n个数y1, y2, , yn, 它们的平方和 的自由度是多少呢? 这就看yi 之间有没有线性约束关系,如果有m个(0m F (a - 1, n - a),则说明试验条件的变化对试验结果有显著影响;若F 4.43=F0.01(4, 20)说明棉花的百分比对人造
21、纤维的抗拉强度有影响。无交互作用的方差分析:设两因素A,B,A有a个水平A1,A2, , Aa,B有b个水平,B1,B2, , Bb, 在每一个组合水平(Ai, Bj)下,进行一次无重复试验,得到试验指标的观察值列于下表:设XijN(ij , 2 ),各xij相互独立。总离差平方和的分解:记在水平Ai 下的样本均值为记在水平Bj 下的样本均值为样本数据的总平均值为总离差平方和为将ST改写并分解得记为ST = SA (效应平方和)+ SB (效应平方和)+ SE (误差平方和)bjijixbx1.1aiijjxax1.1aibjijxabx111aibjijTxxS112)(aibjaibjji
22、ijjiTxxxxxxaxxbS11112.2.2.)()()(自由度:ST的自由度为 ( ab - 1);SA的自由度为 ( a - 1);SB的自由度为 ( b - 1);SE的自由度为 ( a - 1)(b-1);均方:.)1)(1(,1,1baSMSbSMSaSMSEEBBAAF检验法:统计量对于给出的,查出F(a - 1, (a - 1)(b-1), F(b - 1, (a - 1)(b-1)的值, 由样本计算出F1, F2值。从而有如下判断:若F 1 F (a - 1, (a-1)(b-1),则说明因素A的变化对试验结果有显著影响;若F2 F (b - 1, (a-1)(b-1),
23、则说明因素B的变化对试验结果有显著影响;为了方便计算,我们采用下面的简便计算公式:)1)(1( , 1()1)(1( , 1(21babFMSMSFbaaFMSMSFEBEABATEbjjBaiiAaibjijTSSSSabxaxSabxbxSabxxS ,12.2.12.2.112.2方差分析表:例2:(双因素无交互作用的方差分析)使用4种燃料,3种推进器作火箭射程试验,每一种组合情况做一次试验,则得火箭射程列在表中,试分析各种燃料(Ai)与各种推进器(Bj)对火箭射程有无显著影响(=0.05)解:这里a=4, b=3, ab=12731982238515759111342223851268
24、74)204823792432(4112415759126874)1827170215481797(31123111342126874487.582123122222.2.41222222.2.41312222.2BATEjjbiiAijijTSSSSxxSxxSxxS解(2):给出的=0.05, 查出F0.05(3, 6)=4.76, F0.05(2, 6) = 5.14因为F1=0.434.76, F2=0.92 F(f因,fE),说明该因素对试验结果的影响显著,两数差别越大,说明该因素的显著性越大。例1 (无交互作用):磁鼓电机是彩色录像机磁鼓组件的关键部件之一,按质量要求其输出力矩应大
25、于210g.cm。某生产厂过去这项指标的合格率较低,从而希望通过试验找出好的条件,以提高磁鼓电机的输出力矩。根据工程技术人员的经验,取试验因素和相应水平如下表:第二节: 3水平正交设计的方差分析解:(选用正交表L9(34)表头设计:试验计划与试验结果:第二节: 3水平正交设计的方差分析详细计算如下:2 .1162 .765278.3028663105196 .4279 .56866 .14213 .303294)328329273529308025(317 .308553)260100430336235225(313 .304288)252004352836308025(3178.302866
26、)1651(919122CBATEkkTTCCBBAACBASSSSSPyPQSPQSPQSPQSQQQP第二节: 3水平正交设计的方差分析列方差分析表如下:最佳条件的选择:对显著因子应取最好的水平,对不显著因子的水平可以任意选取;在实际中通常从降低成本操作方便等角度加以选择,上面的例子中对因子A与B应选择A2B2,因子C可以任选,譬如为节约材料可选择C1第二节: 3水平正交设计的方差分析验证试验:对A2B2C1进行三次试验,结果为:234,240,220,平均值为231.3. 此结果是满意的例2(有交互作用):为提高某产品的产量,需要考虑3个因素:反应温度、反应压力和溶液浓度。每个因素都取3
27、个水平,具体数值见表。考虑因素之间的所有一级交互作用,试进行方差分析,找出最好的工艺条件。解:(选用正交表L27(313)根据前面的公式作如下计算:22.375)23.3443.3398.32(91,22.375)27.3404.3333.33(91,20.375)30.3313.3321.34(91,33.375)04.3366.3494.32(91,68.375)61.3473.3130.34(91,89.375)93.3208.3263.35(91,00.531)16.5921.3527.6(91,29.376)88.3530.3146.33(91,17.377)21.3370.3073
28、.36(91,13.375)64.100(271222)(222)(222)(222)(222)(222)(2222222222212121BXCBXCAXCAXCAXBAXBCBAQQQQQQQQQP由此得出类似地最后计算总平方和,得出32. 12,87.155,17. 1,04. 22121)()()()(PQQSSSPQSPQSPQSAXBAXBAXBAXBAXBCCBBAA18. 0228. 022121)()()()(PQQSPQQSBXCBXCBXCAXCAXCAXC34. 0(20.16113.37533.53633.536)2712BXCAXCAXBCBATTETTkkTSSS
29、SSSSSSSPQSSxQ交因用公式计算自由度:再用公式计算平均离差的平方和,然后计算F值,再与F分布表中查出的相应的临界值F(f因,fE)比较,判断各因素显著性的大小。通常,若F F0.01(f因,fE),就称该因素是高度显著的,用两个星号表示;若F F0.05(f因,fE),则称该因素的影响是显著的,用一个星号表示;若FF0.05(f因,fE),就称该因素的影响是不显著的,不用星号表示。81826,261271, 422, 213交因总总fffnfxffffffEBXCAXCAXBCBA方差分析表:因为SAXC和SBXC都很小,和误差项合并,作为误差项。通过F值与临界值比较看出,因素A,B
30、,C和交互作用AXB对试验的影响都是显著的,从F值的大小看,因素C最显著,以下依次为A,B,AXB方差分析(2):由于这里的试验指标是产品的产量,越大越好,所以最优方案应取各因素中K的最大值所对应的水平。因素A应取第1水平,因素B应取第3水平,因素C应取第3水平。交互作用AXB也是显著的,但由于AXB占两列,直观分析法有些困难,因此把A和B的各种组合的试验结果对照起来分析。从表中看出,当A取第1水平、B取第3水平时,试验结果为13.17,是所有结果中的最大值,因此取A1B3。于是,最优方案就取A1B3C3.混合型正交设计的方差分析,本质上与一般水平数相等正交设计的方差分析相同,只要在计算时注意
31、到各水平数的差别就行了。现以L8(4X24)混合型正交表为例:总离差平方和为因素偏差平方和有两种情况:2水平因素:4水平因素:281812)(81kkkkTTxxPQS221)(81KKS28124232221)(81)(21kkxKKKKS例4:某钢厂生产一种合金,为便于校直冷拉,需要进行一次退火热处理,以降低合金的硬度。根据冷加工变形量,在该合金技术要求范围内,硬度越低越好。试验的目的是寻求降低硬度的退火工艺参数。考察的指标是洛氏硬度(HR),经分析研究,要考虑的因素有3个: 退火温度A,保温时间B,冷却介质C。解:625.1,500.0)10.12410.126(81,125.1)60.
32、12660.123(81,18.0)70.12550.124(81,645.2)80.12240.127(81)(81,445.0005.7825)89.400684.386841.385676.3918(21)(21,895.4,005.7825)04.62600(818,20.250,90.78295425242222124232221281812SSSSSSKKSPKKKKSPQSTPxTxQECBATTkkkkT方差分析表:从F值和临界值的比较看出,各因素均无显著影响,相对来说,B的影响大些。为提高分析精度,我们只考虑因素B,把因素A,C都并入误差。这样一来,SE就变成SA + SC
33、+ S4 + S5 = 0.445 + 0.18 + 1.125 + 0.500 = 2.250,再列方差分析表。方差分析表(2):临界值 F0.05(1,6) = 5.99, F0.01(1, 6) = 13.75从F值和临界值的比较来看,因素B就是显著性因素了。因素影响从大到小的顺序为BCA,选定的最优方案应为A2B2C1例5:钢片在镀锌前要用酸洗的方法除锈。为了提高除锈效率,缩短酸洗时间,先安排酸洗试验。考察指标是酸洗时间。在除锈效果达到要求的情况下,酸洗时间越短越好。要考虑的因素及其水平如表:选取正交表L9(34),将因素C虚拟1个水平。据经验知,海鸥牌比OP牌的效果好,故虚拟第2水平
34、并安排在第1列。解:虚拟水平的因素C的第1水平重复3次,第二水平重复6次。因此,离差平方和为:其余因素的离差平方和为误差的离差平方和为:546624167876241)56169(919237,6787291912PQSTPxTxQTTkkkkT5 .406241)22201(61)7744(3196322221TKKSC67.4026241)3721476111449(31786241)490082815776(3167.206241)608472255476(319)(312232221DABSSTKKKS16. 4)(DABCTESSSSSS方差分析表:从F值和临界值比较看出,各因素均无
35、显著影响,相对来说,因素D的影响大些。我们把影响最小的因素B并入误差,使得新的误差平方和为SE= SE + SB,再列方差分析表方差分析表(2):由此看出,因素D有显著影响,因素A,B均无显著影响。因素重要性的顺序为DCAB,最优方案为A3B1C2D3.第一节:稳健性和稳健设计第二节:产品的三阶段设计第三节:信噪比稳健性:稳健性(robustness), 也叫鲁棒性,是指因素状况发生微小变差对因变量影响的不敏感性。换句话说,产品性能与某个因素有关,因素状态变化时,产品的性能也随之变化。如果因素状态的变化对产品性能的影响不大,我们就说产品性能对该因素的变化是不敏感的,又称是稳健性的,或说产品性能
36、对该因素的变化具有稳健性。如使产品性能对所用材质变差不灵敏,就能在一些情况下使用较低廉的或低等级的材料;使产品对制造尺寸变差不灵敏,可以提高产品的可制造性、降低制造费用;使产品对使用环境变化不灵敏,就能保证产品使用的可靠性和降低操作费用;稳健设计:在实际问题中存在不少误差因素,它们影响着产品质量。对这些误差因素可以采取两种办法:1) 消除这些因素: 实际上往往很难做到,有的情况下,即使能做到,也要花费很大力气和很高的费用,这是不值得的;2) 尽量降低误差因素的作用,使产品性能因误差因素变化而变化的敏感性最小。根据这种指导思想,对产品的性能、质量和成本综合考虑,选择出最佳设计,既提高了产品质量,
37、又降低了成本,这种设计方法叫做稳健设计;稳健设计是一种最优化设计方法,它的两个主要工具是信噪比和正交表,用信噪比作为特征数衡量质量,用正交表安排试验。何谓三阶段设计:三阶段设计就是在专业设计的基础上,用正交设计方法选择最佳参数组合和最合理的容差范围,尽量用价格低廉的、低等级的零部件来组装整机的优化设计方法。三阶段设计由以下三个阶段组成:1) 系统设计 (system design)2) 参数设计 (parameter design)3) 容差设计 (tolerance design)系统设计的设计质量由设计人员的专业技术水平和应用这些专业知识的能力所决定。三阶段设计的重点是参数设计和容差设计。
38、参数设计:在系统设计的基础上,对影响产品输出特性值的各项参数及其水平,运用DOE方法,找出使输出特性值波动最小的最佳参数水平组合的一种优化设计方法。根据实践经验,零部件、元器件全部采用优质品,装出的整机不一定就是优质品,这是因为整机质量不仅与元器件、零部件本身的质量有关,更主要的是取决于参数水平的组合。参数设计就是要找出参数水平的最佳组合,它是设计的重要阶段、核心阶段。参数设计所用的主要方法就是正交设计法。具体步骤如下:1) 分析、明确问题的要求,选择出因素及水平;2) 选择正交表,按表头设计确定试验方案;3) 具体进行试验,测出需要的特性值;4) 进行数据分析;5)确定最佳方案;容差设计:容
39、差设计又叫公差设计,是在参数设计完成之后再进行的一种设计.容差设计是对产品质量和成本(包括市场情况)进行综合考虑,通过试验设计方法找出各因素重要性的大小,据此给予各参数更合理的容差范围。在容差设计中,为减少用户的损失,需要计算质量损失,以便对容差设计方案的优劣进行评价。容差设计的步骤:1) 针对参数设计所确定的最佳参数水平组合,根据专业知识设想出可以选用的低廉的元器件进行试验设计和计算分析;2) 为简化计算,通常都选取和参数设计中相同的因素为误差因素,3) 选取正交表,安排误差因素,进行试验,测出误差值;4) 方差分析:为研究误差因素的影响,对测出的误差值进行方差分析;5) 容差设计:根据方差
40、分析的结果对各因素选用合适的元件。A. 影响不显著的因素,可选用低等级。低价格的元件;B. 对影响显著的因素要综合考虑;总之要使质量损失最小,成本尽可能低,按这个原则确定各因素的容限。信噪比的概念:信噪比的概念首先是在无线电通信中提出来的。接收机输出功率可分成两部分:信号功率和噪声功率。理论上和实践中经常要考虑信号功率与噪声功率的比值,这个比值就叫做信噪比,通常用表示 = 信号功率/噪声功率 = S/N在试验设计中采用信噪比是田口玄一于1957年提出来的。譬如在测量中经常把(2/2)作为信噪比,这里是质量特征值的平均值,是样本方差。为使用方便,通常把这些量取常用对数再放大10倍作为信噪比,仍记
41、为,但这时的单位是分贝(dB),把说成为信噪比的分贝值。譬如信噪比这个量,通常都是越大越好。22lg10第一节:可靠性和可靠度概念第二节:故障的统计分布函数 第三节:可靠度的计算第四节:可靠度函数与故障率第五节:可靠性设计第六节:可靠性试验第一节:可靠性和可靠度概念产品的质量指标可分为两类:性能指标-产品完成规定功能所需要的指标 例如:电视机的图象、彩色、音质、选择性能等可靠性指标-产品性能随时间的保持能力 例如:电视机的平均寿命 元器件的失效率100台计算机开始工作 仍有95台在工作t=0 t=1000第一节:可靠性和可靠度概念可靠性:产品在规定条件下和规定的时间内完成规定功能的能力,称为产
42、品的可靠性。(可靠性的概率度量称为可靠度。)规定的条件:规定的条件:常指使用条件、维护条件、环境条件和操作技术等。不同条件下,产品的可靠性不同;规定的条件是比较可靠性高低的条件;规定的时间:规定的时间:这是可靠性的核心,不谈论时间就无可靠性可言,可靠性是关于时间的质量。例如:火箭发射系统,只要在十分钟内把火箭送上轨道即可;海底电缆,要求在几十年内可靠;家用电器,有几万小时可靠,顾客也就满意了。可靠度:是指元器件、设备或系统在给定条件下和规定的时间内完成规定功能的概率。1) 工作可靠度Ro(Operational Reliability): 这是实际使用时,机器的可靠度。2) 固有可靠度Ri(I
43、nherent Reliability): 这是产品内在的可靠度,是厂家在生产过程中已经确立下来的可靠度,它是系统、产品从企业规划阶段就已确立的指标,是综合其它指标后的可靠性指标。3) 使用可靠度Ru(Use Reliability): 它与产品的使用有关,与包装、运输、保管、环境、操作情况、维修等因素有关。uioRRR设:设:N0: 参加产品试验的总数; N0=Nf(t)+Ni(t)Nf(t): t 时刻累积故障数;Ni(t): t 时刻未失效仍正常工作的数目;Nf(t): t 到t+ t 时间间隔内发生的故障数;则:则: 单位时间内失效产品数占参加产品试验总数的频率为:产品在t 时刻的故障
44、概率密度f(t)为:可靠度可靠度R(t):R(t): 即产品至时刻t 不发生故障的概率累积故障概率累积故障概率F(t):F(t): 即产品至时刻 t 累积发生故障的概率故障率故障率 ( (t):t): 产品至时刻t , 单位时间内发生故障的产品数和仍在正常工作的产品数之比,即产品工作到某个时间后,单位时间内发生故障的概率。关系:关系:可靠度的计算:设可靠度为R,累积故障概率为F,R+F=1.我们就元件构成系统的不同类型,讨论系统与元件之间可靠度的关系。假设各元件故障的发生是独立的,记Ei为元件i成功运转事件,Ri = P(Ei) 为元件i 的可靠度,Fi=P(Ei)为元件i 的累积故障概率,R
45、s为系统的可靠度,Fs为系统的累积故障概率。可靠度的计算(2):串联方式:设系统由多个元件构成,如果其中任一元件发生故障,都会导致整个系统发生故障,这种构成方式称为串联方式。假设系统由n个元件串联而成,则有由于事件的独立性,有由于Ri1(I=1,2,n), 所以系统的可靠度随着元件个数的增加而下降计算串联方式可靠度的近似方法:1) 假设构成系统的n件元件的故障率都相等,记为q,则假定q很小,利用二项式展开,再忽略q的高次项,则2) 假设各元件的累积故障率为qi, 则有).(21nSEEEPRnnSRRREPEPEPR.)().()(2121nSqR)1 ( nqRS 1niiSqR11可靠度的
46、计算(3):要提高系统的可靠度RS,可以从两方面考虑:1) 减少串联元件个数;2) 提高各元件的可靠度;由于元件数目增加而引起系统可靠度的降低在图上表现得很明显,对同样数量的元件,元件可靠度的提高,可使系统的可靠度提高。可靠度的计算(4):并联方式:设系统由多个元件构成,如果其中某一元件发生故障,系统仍能正常工作,只有当所有元件都发生故障时,系统才不能正常工作,这种构成方式称为并联方式。假设系统由n个元件并联而成,则有由于事件的独立性,有而 所以有由于Fi0) 可靠度函数为故障率为即指数分布的故障率是常量。对于指数分布,串联系统的故障率等于各元件故障率之和。这就是指数分布中故障率的可加性。0,
47、)(tedtetRttttteetRtft)()()(几个重要分布的可靠度函数和故障率(2):2) 正态分布: 密度函数故障分布函数它的可靠度函数为故障率为tetft,21)(222)()(21)(222)(tetFtdt)(1)(1)(ttFtR)(1)()()()(tFtftRtft几个重要分布的可靠度函数和故障率(3):3) 威布尔分布: 密度函数故障分布函数它的可靠度函数为故障率为0,0,0,exp)()()(1ttttf tdftFtexp1)()(0 ttFtRexp)(1)(1)()(tt几个重要分布的可靠度函数和故障率(4):4) 离散型的可靠度函数和故障率: 类似于连续型分布
48、,若离散型的分布律为pk(二项分布为 泊松分布为)则可靠度函数为 故障率为knkknkppCp)1 (! kepkkkiipkR)(kiikkppkRpk)()(第五节:可靠性设计一般概念:事前考虑可靠性的一种设计方法。进行可靠性设计首先要考虑的几个问题:1) 仔细调查了解能够得到的元件的可靠度。2) 根据总目标要求和实际状况,正确地分配各元件的可靠度。3) 必要时采用适当的手段弥补元件可靠度的不足,譬如采用冗余度连接方式,甚至改变系统的结构等。4) 实在不行时,要重新研究和开发可靠度更高的元件。 第五节:可靠性设计平均寿命:产品投入使用到发生故障的平均工作时间。不可修复系统MTTF (Mea
49、n Time To Failure): 失效前平均工作时间若产品的故障概率密度f(t)按指数分布,且(t)=常数时,MTTF=1/第五节:可靠性设计可修复系统MTBF (Mean Time Between Failure)对一系统,在发生故障后,如果经过维修能够恢复到正常状态,这种系统称为可修复系统。可修复系统的维修工作难易不同,表征维修难易程度的量叫维修度,记作M, 即可修复系统在规定条件下和在规定时间内完成维修的概率。系统维修后恢复正常工作,工作一段时间以后又会发生故障,两次故障之间的时间 叫故障间隔,它是一个随机变量,各故障间隔的平均值,叫平均故障间隔,记为MTBF。.若系统的可靠度为R
50、(t),则有若T服从参数为的指数分布,则 0)( dttRMTBF10dteMTBFt第五节:可靠性设计例:一系统由三个子系统A,B,C串联而成,它们的寿命都服从指数分布。要求系统的MTBF在 50h 以上,已知A,B 的 MTBF 分别为 200h,400h,试求C的MTBF。 第五节:可靠性设计解:设A,B,C的故障率分别为A,B,C,系统的故障率为。已知(MTBF)A=200h, (MTBF)B=400h,根据公式得知: (MTBF)A=1/A, (MTBF)B = 1/B所以A= 1/200 = 0.005, B= 1/400 = 0.0025又 = A + B + C = 1/50