1、绝密启用前2021年普通高等学校招生全国统一考试(乙卷)理科数学注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其他答案标号回答非选择题时,将答案写在答题卡上,写在本试卷上无效3考试结束后,将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1设,则( )A B C D2已知集合,则( )A B C D3已知命题,;命题,则下列命题中为真命题的是( )A B C D4设函数,则下列函数中为奇函数的是( )A
2、 B C D5在正方体中,为的中点,则直线与所成的角为( )A B C D6将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )A60种 B120种 C240种 D480种7把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图像,则( )A B C D8在区间与中各随机取1个数,则两数之和大于的概率为( )A B C D9魏晋时期刘徽撰写的海岛算经是关于测量的数学著作,其中第一题是测量海岛的高如图,点,在水平线上,和是两个垂直于水平面且等高的测
3、量标杆的高度,称为“表高”,称为“表距”,和都称为“表目距”,与的差称为“表目距的差”,则海岛的高( )A BC D10设,若为函数的极大值点,则( )A B C D11设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是( )A B C D12设,则( )A B C D二、填空题:本题共4小题,每小题5分,共20分13已知双曲线的一条渐近线为,则C的焦距为_14已知向量,若,则_15记的内角的对边分别为,面积为,则_16以图为正视图,在图中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_(写出符合要求的一组答案即可)三、解答题:共70分解答应
4、写出文字说明、证明过程或演算步骤第1721题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答(一)必考题:共60分17(12分)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和(1)求(2)判断新设备生产产品的该项指标的均值较旧设备是否有
5、显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高)18(12分)如图,四棱锥的底面是矩形,底面,M为的中点,且(1)求,(2)求二面角的正弦值19(12分)记为数列的前n项和,为数列的前n项积,已知(1)证明:数列是等差数列;(2)求的通项公式20(12分)设函数,已知是函数的极值点(1)求a;(2)设函数证明:21(12分)已知抛物线的焦点为F,且F与圆上点的距离的最小值为4(1)求p;(2)若点P在M上,是C的两条切线,是切点,求面积的最大值(二)选考题:共10分请考生在第22、23题中任选一题作答如果多做,则按所做的第一题计分22选修4-4:坐
6、标系与参数方程(10分)在直角坐标系中,的圆心为,半径为1(1)写出的一个参数方程;(2)过点作的两条切线以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程23选修4-5:不等式选讲(10分)已知函数(1)当时,求不等式的解集;(2)若,求a的取值范围2021年普通高等学校招生全国统一考试(乙卷)理科数学参考答案一、选择题1. C 2. C 3. A 4. B 5. D 6. C 7. B 8. B 9. A 10. D 11. C 12. B 二、填空题13.4 14. 15. 16. (答案不唯一) 三、解答题(一)必考题17. (1);(2)新设备生产产品的该项指标的均值较旧设备有显著提高.18. (1);(2)19. (1)由已知得,且,取,得,由题意得,消积得到项的递推关系,进而证明数列是等差数列;(2)20. (1);(2)由()知,其定义域为要证,即证,即证()当时,即证令,因为,所以在区间内为增函数,所以()当时,即证,由()分析知在区间内为减函数,所以综合()()有21. (1);(2).(二)选考题22.(1),(为参数);(2)和23. (1).(2).第 6 页 共 6 页