1、九年级数学试卷 第 1 页(共 4 页) 四会市广附实验学校四会市广附实验学校2021-2022学年第一学期学年第一学期九九年级年级 数学科综合练习数学科综合练习 说明:1全卷共 4 页,满分为 120 分,考试用时为 90 分钟。 一、选择题一、选择题: (: (本大题共本大题共 10 小题,每小题小题,每小题 3 分,满分分,满分 30 分分. . 在每小题给出的四个选项中,只有在每小题给出的四个选项中,只有一项是符合题目要求的一项是符合题目要求的. . 请把答题卡上对应题目所选的选项涂黑请把答题卡上对应题目所选的选项涂黑) 1下列方程中,不是一元二次方程的是 A2762xx B21xx
2、C2650 x D24573xx 2抛物线4)3(22xy的顶点坐标是 A)4 , 3( B)4 , 3( C)4, 3( D)4 , 2( 3用配方法解方程0122xx时,配方结果正确的是 A2(2)2x B2(1)2x C2(2)3x D2(1)3x 4已知O 的直径为 6,OA3,则点 A 和O 的位置关系是 A在圆上 B在圆外 C在圆内 D不确定 5如图 4,O中,弦AB,CD相交于点P,42A =,77APD =,则B的大小是 A.34 B.35 C.43 D.44 6下列图形中既是轴对称图形又是中心对称图形的是 7 将抛物线2yx向右平移 2 个单位,所得抛物线的函数表达式是 A2
3、2yx B22yx C.22yx D22yx 8如图,将三角尺ABC(其中ABC60,C90)绕点B按顺时针方向转动一个角度到A1BC1的位置, 使得点A,B,C1在同一条直线上, 那么这个角度等于( ) A120 B90 C60 D30 9、由二次函数22(3)1yx可知 A、其图象的开口向下 B、其最大值为 1 C、其图象的对称轴为直线3x D、当3x 时,y随x的增大而减小 (图 5) 九年级数学试卷 第 2 页(共 4 页) 10二次函数 yax2+bx+c(a0)的图象如图所示,下列结论: 240acb; 0abc; 42acb; 2abambm(m 为实数);一元二次方程 ax2+
4、bx+c+10(a0)有两个不等的实数根. 上述结论中正确的有( )个。 A. 1 B. 2 C. 3 D. 4 二、填填空题空题:本大题共本大题共 7 小题,每小题小题,每小题 4 分,满分分,满分 28 分分. . 11 把一元二次方程xx612化为一般式得 , 它的的一次项系数是 12点(2, 3)P关于原点对称的点p的坐标为 13已知关于 x 的方程220 xxm-+=有两个相等的实数根,则 m 的值是 14将一个正方形绕着其中心按顺时针方向至少旋转 度就可以和原来的图形重合 15如图 15,AB 是O 的弦,半径 OCAB 于点 D,且 AB=8,OD=3,则 OC= 16.上图是抛
5、物线cbxaxy2图象的一部分,请根据图象写出不等式cbxax20解集 17如图,在直角坐标系中,已知点 A(3,0),B(0,4),对OAB 连续作旋转变换,依次得到三角形,则三角形的直角顶点的坐标为_ 三、三、解答题(一) :解答题(一) :本大题本大题 3 3 小题,每小题小题,每小题 6 6 分,满分分,满分 1818 分分. . 18. 解方程: 2450 xx. 题 17 图 图 15 九年级数学试卷 第 3 页(共 4 页) 19如图,在平面直角坐标系内,ABC 的顶点坐标分别为 A(1,5) ,B(4,1) ,C(1,1) ,将ABC 绕点 A 逆时针旋转 90,得到ABC,点
6、 B,C 的对应点分别为点 B,C (1)画出ABC; (2)写出点 A,B 关于原点 O 的对称点 A,B的坐标; (3)求出在ABC 旋转的过程中,点 C 经过的路径长 20某商店将成本为每件 60 元的某商品标价 100 元出售 (1)为了促销,该商品经过两次降低后每件售价为 81 元,若两次降价的百分率相同,求每次降价的百分率; (2)经调查,该商品每降价 2 元,每月可多售出 10 件,若该商品按原标价出售,每月可销售100 件,那么当销售价为多少元时,可以使该商品的月利润最大?最大的月利润是多少? 四、解答题(二) (本大题四、解答题(二) (本大题 3 3 小题,每小题小题,每小
7、题 8 8 分,共分,共 2424 分)分) 21已知关于 x 的方程0)21(4) 12(2kxkx (1)求证:无论 k 取何值,此方程总有实数根; (2)若等腰ABC 的一边长 a3,另两边 b、c 恰好是这个方程的两个根,求 k 值多少? 22 如图, 点 D 是ABC 内一点, 把ABD 绕点 B 顺时针方向旋转 60得到CBE, 若 AD=4, BD=3,CD=5 (1)判断DEC 的形状,并说明理由; (2)求ADB 的度数 九年级数学试卷 第 4 页(共 4 页) 23.如图,A(-1,0) 、B 两点在一次函数 y1=-x+m 与二次函数 y2=x2-2x-3 的图象上 (1
8、)求 m 的值和点 B 的坐标 (2)二次函数交 y 轴于 C,求ABC 的面积 五、解答题(三) (本大题五、解答题(三) (本大题 2 小题,每小题小题,每小题 10 分,共分,共 20 分)分) 24.如图, AB 是O 的直径, BD 是O 的弦, 延长 BD 到点 C, 使 DC=BD,连结 AC,过点 D 作 DEAC,垂足为 E. (1)求证:AB=AC (2)求证:DE 为O 的切线. (3)若O 的半径为 5,BAC=60,求 DE 的长. 25.如图,已知抛物线cbxaxy2的图象与 x 轴交于 A(2 , 0),B(- 8 , 0)两点,与 y轴交于点 C(0 , - 8) (1)求抛物线的解析式; (2)点 F 是直线 BC 下方抛物线上的一点,当BCF 的面积最大时,求出点 F 的坐标; (3)在(2)的条件下,是否存在这样的点 Q(0,m) ,使得BFQ 为等腰三角形?如果有,请直接写出点 Q 的坐标;如果没有,请说明理由