1、半导体物理第1章 半导体中的电子状态 单电子近似能带论n 半导体材料中的电子状态及其运动规律本章重点本章重点n 领会“结构决定性质”处理方法假设每个电子是在周期性排列且固定不动的原子核势场及其它电子的平均势场中运动。该势场具有与晶格同周期的周期性势场。单电子近似1.1 半导体的晶格结构和结合性质预备知识晶体(crystal)由周期排列的原子构成的物体重要的半导体晶体单质:硅、锗化合物:砷化镓、碳化硅、氮化镓非晶多晶单晶周期性结构:如简立方、面心立方、体心立方等。晶格(lattice)晶胞(cell)周期性重复单元固体物理学原胞:最小重复单元结晶学原胞:为反映对称性选取的最小重复单元的几倍1.1
2、.1 金刚石型结构和共价键硅、锗:共价半导体硅、锗晶体结构:金刚石结构GeSi+14 2 8 4+32 2 84182262214:12233iSsspsp226261 0223 2:12233344eGsspspdsp轨道杂化过程3sp每个原子周围有四个最邻近的原子,这四个原子处于正四面体的顶角上。任一顶角上的原子和中心原子各贡献一个价电子为该两个原子所共有,并形成稳定的共价键结构。共价键夹角:10928金刚石结构硅和锗的共价键结构硅和锗的共价键结构共价键共价键共用电子对共用电子对+4+4+4+4金刚石结构结晶学原胞两个面心立方沿立方体空间对角线互相位移了四分之一的空间对角线长度套构而成。金
3、刚石结构固体物理学原胞中心有原子的正四面体结构金刚石结构原子在晶胞内的排列情况顶角八个,贡献1个原子;面心六个,贡献3个原子;晶胞内部4个;共计8个原子。硅、锗基本物理参数一、晶格常数硅:0.543089nm锗:0.565754nm二、原子密度(个/cm3)硅:5.001022锗:4.421022三、共价半径硅:0.117nm锗:0.122nm1.1.2 闪锌矿型结构和混合键-族化合物半导体材料结晶学原胞结构特点两类原子各自组成的面心立方晶格,沿空间对角线方向彼此位移四分之一空间对角线长度套构而成。共价键具有一定的极性(两类原子的电负性不同),因此晶体不同晶面的性质不同。不同双原子复式晶格。与
4、金刚石结构的区别与金刚石结构的区别-族化合物,如 ,等部分-族化合物,如硒化汞,碲化汞等半金属材料。常见闪锌矿结构半导体材料常见闪锌矿结构半导体材料aSG AnI P1.1.3 纤锌矿型结构与闪锌矿型结构相比相同点以正四面体结构为基础构成区别具有六方对称性,而非立方对称性共价键的离子性更强1.2半导体中的电子状态和能带1.2.1原子的能级和晶体的能带自由电子自由电子孤立原子中的电子孤立原子中的电子晶体中的电子晶体中的电子不受任何电荷作不受任何电荷作用(势场为零)用(势场为零)本身原子核及其他本身原子核及其他电子的作用电子的作用严格周期性势场严格周期性势场(周期排列的原子核(周期排列的原子核势场
5、及大量电子的平势场及大量电子的平均势场)均势场)一.能带论的定性叙述1.孤立原子中的电子状态孤立原子中的电子状态主量子数主量子数n:1,2,3,n:1,2,3,角量子数角量子数 l:0,1,2,(n1)s,p,d,.磁量子数磁量子数 ml:0,1,2,l自旋量子数自旋量子数ms:1/2主量子数主量子数n确定后:确定后:n=1202(21)2nln 孤立原子、电子有确定的能级结构。在固体中则不同,由于原子之间距离很近,相互作用很强,在晶体中电子在理想的周期势场内作共有化运动。Q能带模型:能带成因当N个原子彼此靠近时,根据不相容原理,原来分属于N个原子的相同的价电子能级必然分裂成属于整个晶体的N个
6、能量稍有差别的能带。226221 4:12233iSsspsp分裂的每一个能带称为允带,允带间的能量范围称为禁带内层原子受到的束缚强,共有化运动弱,能级分裂小,能带窄;外层原子受束缚弱,共有化运动强,能级分裂明显,能带宽。能带特点1.2.2 半导体中的电子状态和能带自由电子运动规律基本方程 (动量方程)(能量方程)(波方程)为波矢,大小等于波长倒数 方向与波面法线平行,即波的传播方向。222002ph kEmm1k2220()()2dxExmx0phkm V2()ikxxAe德布罗意假设:一切微观粒子都具有波粒二象性.具有确定的动量和确定能量的自由粒子,相当于频率为和波长为的平面波自由电子能量
7、和动量与平面波频率和波矢的关系E=p=hhk考虑一维情况,根据波函数和薛定谔方程,可以求得:E=根据上述方程可以看出:对于自由电子能量和运动状态之间呈抛物线变化关系;即自由电子的能量可以是0至无限大间的任何值。2202h km0h kVm01.晶体中的薛定谔方程及其解的形式描述微观粒子运动的方程-薛定谔方程晶体中电子遵守的薛定谔方程布洛赫定理及布洛赫波()()V xV xna布洛赫定理:布洛赫定理:在周期性势场中运动的电子,满足薛定谔在周期性势场中运动的电子,满足薛定谔方程的波函数一定具有如下形式:方程的波函数一定具有如下形式:k(x)=uk(x)ei2 kx uk(x)=uk(x+na)布洛
8、赫波函数布洛赫波函数晶格常数晶格常数()()V xV xna 与自由电子的波函数比较与自由电子的波函数比较相同点:相同点:晶体中电子运动的波函数与自由电子的波函数晶体中电子运动的波函数与自由电子的波函数形式相似,代表一个波长为形式相似,代表一个波长为1/k,而在,而在k方向上方向上传播的平面波;传播的平面波;不同点:不同点:该波的振幅随该波的振幅随x作周期性变化,其变化周期与作周期性变化,其变化周期与晶格周期相同晶格周期相同-一个调幅的平面波。一个调幅的平面波。对于自由电子在空间各点找到电子的几率相同;而晶体中各点找到电子的几率具有周期性的变化规律,即描述了晶体电子围绕原子核的运动。电子不再完
9、全局限在某个原子上,而是可以从晶胞中的某一点自由的运动到其他晶胞内的对应点。这种运动就是电子在晶体内的共有化运动。外层电子共有化运动强,成为准自由电子。布洛赫波函数中的波矢k与自由电子波函数中的一样,描述晶体中电子的共有化运动状态。2.布里渊区与能带求解晶体中电子的薛定谔方程,可得如图1-10(a)所示的E(k)k关系。K=n/2a(n=0,1,2,)时能量出现不连续,形成一系列的允带和禁带。能带(energy band)包括允带和禁带。允带(allowed band):允许电子能量存在的能量范围。禁带(forbidden band):不允许电子存在的能量范围。对于有限的晶体,根据周期性边界条
10、件,波矢k只能取分立数值。对于边长为L的立方晶体kx=nx/L(nx=0,1,2,)ky=ny/L(ny=0,1,2,)kz=nz/L(nz=0,1,2,)1.2.3导体、半导体、绝缘体的能带固体材料:超导体固体材料:超导体:大于大于106(cm)-1 导导 体体:106104(cm)-1 半导体半导体:10410-10(cm)-1 绝缘体绝缘体:小于小于10-10(cm)-1三者的主要区别:禁带宽度和导带填充程度金属导带半满半导体禁带宽度在1eV左右绝缘体禁带宽且导带空半导体和绝缘体半导体和绝缘体的能带类似,价带被电子占满,中间为禁带,导带是空带。因此,在外电场作用下并不导电。但是这只是绝对
11、温度为零时的情况。当外界条件发生变化时,例如温度升高或有光照时,满带中有少量电子可能被激发到导带,使导带底部附近有了少量电子,因而在外电场作用下,这些电子将参与导电。本征激发+4+4+4+4自由电子自由电子空穴空穴束缚电子束缚电子 当原子中的价电子激发为自由电子时,原子中留当原子中的价电子激发为自由电子时,原子中留下空位,同时原子因失去价电子而带正电。下空位,同时原子因失去价电子而带正电。当邻近原子中的价电子不断填补这些空位时形成当邻近原子中的价电子不断填补这些空位时形成一种运动,该运动可等效地看作是一种运动,该运动可等效地看作是空穴的运动空穴的运动。注意:注意:空穴运动方向与价电子填补方向相
12、反。空穴运动方向与价电子填补方向相反。自由电子自由电子 带负电带负电半导体中有两种导电的载流子半导体中有两种导电的载流子空空 穴穴 带正电带正电 空穴的运动空穴的运动绝缘体的禁带宽度很大,激发电子需要很大的能量,在通常温度下,能激发到导带中的电子很少,所以导电性很差。半导体禁带宽度比较小,数量在1eV左右,在通常温度 下已有不少电子被激发到导带中去,所以具有一定的导电能力,这是绝缘体和半导体的主要区别。室温下,金刚石的禁带宽度为67eV,它是绝缘体;硅为1.12eV,锗为0.67eV,砷化镓为1.43eV,所以它们都是半导体。1.3半导体中电子的运动有效质量1.3.1半导体中的E(k)与k的关
13、系设能带底位于波数k,将E(k)在k=0处按泰勒级数展开,取至k2项,可得220021()(0)()()2kkdEd EE kEkkdkdk由于k=0时能量极小,所以一阶导数为0,有2022)(21)0()(kdkEdEkEkE(0)为导带底能量对于给定半导体,二阶导数为恒定值,令所以有2022*11()knd Ehdkm22*()(0)2nh kE kEm式中的 称为能带底电子有效质量,为正值;若能带顶也位于k=0处,则按照与上述相同的方法可得能带顶电子有效质量,为负值。*nm*nm1.3.2半导体中电子的平均速度自由电子速度根据 可得所以自由电子速度222022oph kEmm20dEh
14、kdkm0h kVm01hkdEVmh dk根据量子力学,电子的运动可以看作波包的运动,波包的群速就是电子运动的平均速度(波包中心的运动速度)。设波包有许多频率 相近的波组成,则波包的群速为:半导体中电子的速度dVdk根据波粒二象性,频率为 的波,其粒子的能量为 ,所以速度E h1d EVhd k将 代入上式,可得由于不同位置有效质量正负的不同,速度的方向也不同22*()(0)2nh kE kEm*nhkVm1.3.3半导体中电子的加速度当外加电场时,半导体中电子的运动规律。当有强度为|E|的外电场时,电子受力f=-q|E|外力对电子做功dEfdsfVdt由于所以而上式左端1 dEVh dkf
15、 dEdEdtdkdkdkdEdE 代入上式,可得在外力作用下,波矢变化与外力成正比。dtdkhf 电子的加速度利用电子有效质量定义222221)(1dkEdhfdtdkdkEdhdkdEdtdhdtdva222*dkEdhmn可得上式与牛顿第二定律类似*nmfa 1.3.4 有效质量的意义(1)晶体中的电子一方面受到外力的作用,另一方面,)晶体中的电子一方面受到外力的作用,另一方面,受到内部原子及其他电子的势场作用。受到内部原子及其他电子的势场作用。(2)电子的加速度应是所有场的综合效果。)电子的加速度应是所有场的综合效果。(3)内部电场计算困难。)内部电场计算困难。(4)引入有效质量可使问
16、题简单化,直接把外力和加速)引入有效质量可使问题简单化,直接把外力和加速度联系起来,度联系起来,而内部的势场作用由有效质量概括。而内部的势场作用由有效质量概括。(5)解决晶体中电子在外力作用下,)解决晶体中电子在外力作用下,不涉及内部势场的不涉及内部势场的作用,使问题简化。作用,使问题简化。(6)有效质量可以直接测定。)有效质量可以直接测定。有效质量的正负与位置有关。能带顶部附近,有效质量为负;能带底部附近,有效质量为正。有效质量的大小由共有化运动的强弱有关。能带越窄,二次微商越小,有效质量越大(内层电子的有效质量大);能带越宽,二次微商越大;有效质量越小(外层电子的有效质量小)。有效质量的特
17、点()()V kVk()()E kE k01hkdEVmh dk2022*11()knd Ehdkm1.4本征半导体的导电机构空穴导电机理:电子填充能带的情况室温下,半导体中的电子与空穴绝对零度时,半导体中的情况两种情况下的能带图T=0T 0空穴的特点带正电荷+q价带顶部附近电子的加速度00q EdVfadtmm若令则空穴的加速度可表示为*npmm价带顶附近空穴有效质量为正ppq Efamm引入空穴的意义通常把价带中空着的状态看成是带正电的粒子,称为空穴。引进这样一个假象的粒子空穴后,便可以很简便地描述价带的电流。把价带中大量电子对电流的贡献用少量的空穴表达出来。半导体中有电子和空穴两种载流子
18、,而金属中只有电子一种载流子。1.5 回旋共振晶体各向异性,不同方向晶体性质不同,E(k)k关系不同。1.5.1 k空间等能面 若设一维情况下能带极值在k=0处,导带底附近*222)0()(nmkhEkE价带顶附近对于实际三维晶体*222)0()(pmkhEkE2222zyxkkkk1.5 回旋共振设导带底位于波数k=0,导带底附近等能量面是一系列半径为 =的球面.)(2)0()(222*2zyxnkkkmhEkE*22()(0)nmE kEh2k但晶体具有各向异性的性质,不同方向晶体性质不同,E(k)k关系不同。不同的方向,电子的有效质量不一定相同能带的极值不一定位于波数k=0处根据晶体各向
19、异性的性质,用泰勒级数在极值k0附近展开。略去高次项,得000)(11)(11)(11)()()(2)()(222*222*222*20*20*2020.kzzkyykxxzzzyyyxxxkEhmkEhmkEhmmkkmkkmkkhkEkE上式可改写为K空间等能面是环绕k0的一系列椭球面1)(2)()(2)()(2)(2*202*202*20hEEmkkhEEmkkhEEmkkczzzcyyycxxx1.5.2回旋共振1.5.2回旋共振1.5.2回旋共振1.5.2回旋共振1.5.2回旋共振1.5.2回旋共振1.6硅和锗的能带结构1.6 硅和锗的能带结构硅和锗的能带结构硅、锗都是间接带隙半导体
20、:导带底与价带顶波矢k k不同。硅和锗的价带结构:有三条价带,其中有两条价带的极值在k0处重合 禁带宽度随温度升高而减小.TTETEgg2)0()(1.6硅和锗的能带结构1.6硅和锗的能带结构1.6硅和锗的能带结构1.6 硅和锗的能带结构硅和锗的能带结构硅、锗都是间接带隙半导体:导带底与价带顶波矢k k不同。硅和锗的价带结构:有三条价带,其中有两条价带的极值在k0处重合 禁带宽度随温度升高而减小.TTETEgg2)0()(2101234gE价 带111100导 带能量/eVS ip动量1.7 III-V族化合物半导体的能带结构族化合物半导体的能带结构1.GaAs1.GaAs的能带结构的能带结构
21、:GaAs是直接带隙半导体,导带极小值与价带极大值对应同一波矢 电子跃迁k k不变。当电子从价带转换到导带时,不需要动量转换。01234gE价 带 1 1 1 1 0 0 导 带能量/eVG aA sE0.29eVp动量1.10 宽禁带宽禁带半导体材料半导体材料禁带宽度大于或等于2.3eV的半导体材料SiC、GaN等。制作蓝光、绿光、紫外光的发光器件和光探测器件。思考题1-1、什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。1-2、试定性说明Ge、Si的禁带宽度具有负温度系数的原因。1-3、试指出空穴的主要特征。1-4、简述Ge、Si和GaAS的能带结构的主要特征。1-1
22、 解:在一定温度下,价带电子获得足够的能量(Eg)被激发到导带成为导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。1-2解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。因此,Ge、Si的禁带宽度具有负温度系数。1-3解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。主要特征如下:A、荷正电:+q;B、空穴浓度表示为p(电子浓度表示为n);C、mP*=-mn*。1-3解:(1)Ge、Si:a)Eg(Si:0K)=1.17eV;Eg(Ge:0K)=0.7437eV;b)间接能隙结构;c)禁带宽度Eg随温度增加而减小.(2)GaAs:a)Eg(300K)=1.424eV;Eg(0K)=1.522eV;b)直接能隙结构;c)Eg负温度系数特性.