1、小功率调频发射机设计小功率调频发射机设计 学习要求学习要求 掌握调频发射机整机电路的设计与调试方法,以及高频电路的调试中常见故障的分析与排除;学会如何将高频单元电路组合起来实现满足工程实际要求的整机电路的设计与调试技术。(a)高高 频频 振振 荡荡 频频 率率 调调 制制 调调 制制 信信 号号 缓缓 冲冲 放放 大大 倍倍 频频 高高 频频 功功 放放 组成框图 发射功率发射功率 一般是指发射机输送到天线上的功率。总效率总效率 发射机发射的总功率 与其消耗的总功率 PC 之比,称为发射机的总效率 。APA 工作频率或波段工作频率或波段 发射机的工作频率应根据调制方式,在国家或有关部门所规定的
2、范围内选取。主要技术指标 整机电路的设计计算顺序一般是从末整机电路的设计计算顺序一般是从末级单元电路开始,向前逐级进行。而级单元电路开始,向前逐级进行。而电路的装调顺序一般从前级单元电路电路的装调顺序一般从前级单元电路开始,向后逐级进行。开始,向后逐级进行。1、单元电路设计与调试、单元电路设计与调试RB2VQRB1C1VCCL1CC2C3EBCBRETRCDCcC4AL2C5C6DCR3R2R1vLC 振荡器调频电路*其中,晶体管T、L1、C1、C2、C3组成电容三点式振荡器的改进型电路 即克拉泼电路,接成共基组态,CB为基极耦合电容,其静态工作点由RB1、RB2、RE及RC所决定,即由公式(
3、4-2-1)(4-2-4)决定。ICQ一般为(14)mA。ICQ偏大,振荡幅度增加,但波形失真加重,频率稳定性变差。L1、C1与C2、C3组成并联谐振回路,其中C3两端的电压构成振荡器的反馈电压,以满足相位平衡条件Sj=2np。比值C2/C3=F,决定反馈电压的大小,反馈系数F一般取1/81/2。为减小晶体管的极间电容对回路振荡频率的影响,C2、C3的取值要大。如果选C1C2,C1R2,R3R1,以减小调制信号v对VQ的影响。C5与高频扼流圈L2给v提供通路,C6起高频滤波作用。变容二极管DC通过Cc部分接入振荡回路,有利于提高主振频率fo的稳定性,减小调制失真。图4.2.2为变容二极管部分接
4、入振荡回路的等效电路,接入系数p及回路总电容CS分别为CcCjC1L1jccCCCpjcjc1CCCCCCSC j 变容二极管的变容二极管的Cj-v 特性曲线特性曲线 图4.2.3 变容二极管的Cj-v特性曲线 变容二极管的Cj-v特性曲线如图4.2.3所示。设电路工作在线性调制状态,在静态工作点Q处,曲线的斜率为VCkC1-3、LC调频调频振荡器振荡器主要性能参数及其测试方法主要性能参数及其测试方法 主振频率主振频率 LC振荡器的输出频率fo称为主振频率或载波频率。用数字频率计测量回路的谐振频率fo,高频电压表测量谐振电压vo,示波器监测振荡波形。频率稳定度频率稳定度 主振频率fo的相对稳定
5、性用频率稳定 度表示。小时/ominmaxoofffff 最大频偏最大频偏 指在一定的调制电压作用下所能达到的最大频率偏移值。将 称为相对频偏。omff 变容二极管特性曲线变容二极管特性曲线 特性曲线Cj-v 如图4.2.3示。性能参数VQ、Cj0、及Q点处的斜率kc等可以通过Cj-v 特性曲线估算。jC 图4.2.4是变容二极管2CC1C的Cj-v 曲线。由图可得 VQ=4V时 CQ=75pF,调制灵敏度调制灵敏度 单位调制电压所引起的最大频偏称为调制灵敏度,以 表示,单位为 kHz/V,即fSmmVfSf 为调制信号的幅度;为变容管的结电容变化 时引起的最大频偏。回路总电容的变化量为mVm
6、fjCj2CpCS在频偏较小时,与 的关系可采用下面近似公式,即SSQom21CCffmfSC p-f ,jC-f。为静态时谐振回路的总电容,即SQCQCQC1QCCCCCCS C1-f调制灵敏度 mQo2VCCfSfSS 为回路总电容的变化量;SC式中,调制灵敏度 可以由变容二极管Cj-v 特性曲线上VQ处的斜率kc及式(4-2-15)计算。越大,说明调制信号的控制作用越强,产生的频偏越大。fSfSfS 1-4、设计举例、设计举例 例 设计一LC高频振荡器与变容二极管调频电路。kHz10mf振荡器的静态工作点取 ,测得三极管的 由式(4-2-1)式(4-2-4)计算出各电阻值。V6CEQV6
7、0。mA2CQI 主要技术指标主要技术指标 主振频率 fo=5MHz,频率稳定度510 4/小时,主振级的输出电压Vo1V,最大频偏 。已知条件已知条件 +VCC=+12V,高频三极管3DG100,变容二极管2CC1C。(1)确定电路形式,设置静态工作点确定电路形式,设置静态工作点(2)计算主振回路元件值计算主振回路元件值 由式(4-2-5)得 ,若取C1=100pF,则L110H实验中可适当调整L1的圈数或C1的值。11o21CLf电容C2、C3由反馈系数 F 及电路条件C1C2,C1C3 所决定,若取C2=510 pF,由 ,则 取 C3=3000 pF,取耦合电容 Cb=0.01F。2/
8、18/1/32CCF (3)测变容二极管的测变容二极管的Cj-v 特性曲线,设置变容管的静特性曲线,设置变容管的静态工态工 作点作点VQ本题给定变容二极管的型号为 2CC1C,已测量出其Cj-v 曲线如图4.2.4所示。取变容管静态反向偏压VQ=4V,由特性曲线可得变容管的静态电容CQ=75pF。(4)计算调频电路元件值计算调频电路元件值变容管的静态反向偏压VQ由电阻 R1与R2分压决定,已知 VQ=4V,若取 R2=10k,隔离电阻 R3=150k。k201R为减小振荡回路高频电压对变容管的影响,应取小,但 过小又会使频偏达不到指标要求。可以先取 ,然后在实验中调试。当VQ=-4V时,对应C
9、Q=75pF,则 CC 18.8 pf.取标称值20pF)(jccCCCpp2.0pp(5)计算调制信号的幅度计算调制信号的幅度 为达到最大频偏 的要求,调制信号的幅度Vm,可由下列关系式求出。由式(4-2-14)得mfSSQom21CCff由Cj-v 曲线得变容管 2CC1C 在VQ=4V 处的斜率5.12jCVCkpF/V,由式(4-2-9)得调制信号的幅度Vm=Cj/kc=0.92V。由式(4-2-12)得调制灵敏度Sf 为9.10mmVfSfkHz/V 1-5、调频振荡器的装调与测试、调频振荡器的装调与测试 A。安装要点。安装要点 电路元件不要排得太松,引线尽量不要平行,否 则会引起寄
10、生反馈。多级放大器应排成一条直线,尽量减小末级与前级之间的耦合。地线应尽可能粗,以减小分布电感引起的高频损耗。为减小电源内阻形成的寄生反馈,应采用滤波电容 C及滤波电感 L组成的型或型滤波电路。安装时应合理布局,减小分布参数的影响。b。测试点选择测试点选择 正确选择测试点,减小仪器对被测电路的影响。在高频情况下,测量仪器的输入阻抗(包含电阻和电容)及连接电缆的分布参数都有可能影响被测电路的谐振频率及谐振回路的Q值,为减小这种影响,应使仪器的输入阻抗远大于电路测试点的输出阻抗。所有测量仪器如高频电压表、示波器、扫频仪、数字频率计等的地线及输入电缆的地线都要与被测电路的地线连接好,接线接线尽量短。
11、C。调试方法调试方法(1)先调整静态工作点)先调整静态工作点。(3)测量频偏)测量频偏 加入幅度为V的调制信号以后,可以采用频偏仪测量频偏。也可以用示波器测量 C点的波形,观察波形在X 方向的相移。(2)观测动态波形并测量电路的性能参数)观测动态波形并测量电路的性能参数。与低频电路的调试基本相同,所不同的是按照理论公式计算的电路参数与实际参数可能相差较大,电路的调试要复杂一些。f m的测试:用示波器测试波形相移可反映频偏大小:波形相移可反映频偏大小:设设 f m20KHz,fo6.5MHz即即fo(t)(6.48MHz,6.52MHz),),1s内在示波内在示波器上按照最大频偏算(示波器的特性
12、)的器上按照最大频偏算(示波器的特性)的总相移总相移SS(w2-w1)*1s2*f m*2p p80K p p,1s内内共有共有6.5M个波形(载波),故平均个波形(载波),故平均每个周期相移每个周期相移 SS/6.5M(4/325)p p 若观察第若观察第20个周期波形,相移个周期波形,相移20*0.25 p p 可通过此法判断可通过此法判断 f m是否达到指标。是否达到指标。2、高频功率放大器设计高频功率放大器设计 利用宽带变压器宽带变压器作耦合回路的功率放大器称为宽带宽带功率放大器功率放大器。它不需要调谐回路,可在很宽的频率范围内获得线性放大。但效率 较低,一般只有20%左右。它通常作为
13、发射机的中间级,以提供较大的激励功率。利用选频网络选频网络作为负载回路的功率放大器称为谐振谐振功率放大器功率放大器。根据放大器电流导通角的范围,可以分为甲类、乙类、丙类和丁类等功率放大器。丙类功放的电流导通角50%,负载 RL=51。2-4、高频功率放大器的调整、高频功率放大器的调整寄生振荡及其消除寄生振荡及其消除(1)参量自激型寄生振荡 当功放的输出电压 足够大时,晶体管的许多参数(如集电结电容 )将随着工作状态的变化而变化,产生许多新的频率分量存在于晶体管的输出和输入端,而形成自激振荡。图(a)为1/2基波的影响,图(b)为 3倍频的影响。CmVcbC 参量自激的特点是:必须在外加信号激励
14、下才产生,因此断开激励信号观察振荡是否继续存在,是判断自激型寄生振荡的有效方法。参量寄生振荡使输出电压的峰值可能显著增加(比正常值大5倍6倍),回路可能处于失谐状态,集电极的耗散功率会很大,有可能导致晶体管损坏。消除参量寄生振荡的常用办法是:在基极或发射极接入防振电阻(几欧姆至几十欧姆),或引入适当的高频电压负反馈,或降低回路的QL值,如果可能的话,减小激励信号电平。2-4、高频功率放大器的调整、高频功率放大器的调整(2)反馈型寄生振荡 反馈型寄生振荡又分为低频寄生振荡低频寄生振荡与高频或高频或超高频寄生振荡超高频寄生振荡。图4.3.10分别为叠加有低频自激与高频自激信号的输出波形。低频寄生振
15、荡一般是由功放输入输出回路中的分布电容引起的。消除低频寄生振荡的办法是设法破坏它的正反馈支路,例如减少基极回路线圈的电感量或串入电阻RF,降低线圈的Q值。高频寄生振荡一般是由电路的分布参数(分布电容、引线电感等)的影响所造成的。例如引线较长时,其产生的分布电感(使放大器原有的电感相当于开路)与电路中的分布电容构成了振荡回路。消除高频寄生振荡的有效办法是:尽量减少引线的长度、合理布局元器件或在基极回路接入防振电阻。3、整机设计举例、整机设计举例V12CCVmW500AP 51LRkHz10mf%50A例例 设计一小功率调频发射机设计一小功率调频发射机 已知已知 ,晶体管 3DG100,=60。主
16、要技术指标主要技术指标 发射功率 ,负载电阻(天线),工作中心频率 f0=5 MHz ,最大频偏 ,总效率 。调制信号缓冲隔离LC 振荡与调频1.25mW0dB1.25mW13dB25mW13dB500mW功率激励末级功放 LC振荡与调频电路 产生频率 的高频振荡 信 号。变 容 二 极 管 线 性 调 频,最 大 频偏 。发射机的频率稳定度由该级决定。MHz50fkHz10mf 缓冲隔离级 将振荡级与功放级隔离,以减小功放级对振荡级的影响。缓冲隔离级常采用射极跟随器电路。末级功放 将前级送来的信号进行功率放大,使负载(天线)上获得满足要求的发射功率。如果要求整机效率较高,则应采用丙类功率放大
17、器 功率激励级 为末级功放提供激励功率。如果发射功率不大,且振荡级的输出功率能够满足末级功放的输入要求,则功率激励级可以省去。(2)增益分配功率增益 如果集中在末级功放,则电路性能不稳,容易产生自激。因此要根据发射机各组成部分的作用,合理地分配功率增益。缓冲级可以不分配功率增益。设各级功率增益如图 4.4.2 所示。(1)拟定发射机的组成方框图 4、整机、整机 电路的装调与测试电路的装调与测试 R4 1k28kR2 8.2kR1R3T1C1 0.01F510pFC32000pFC4C533pFC620pF4.7FC8 5100pF10kDC150kR520kR6R11*47H2kC2100pF
18、L110H47HC7R72CC1C8kR8R9R101k0.047FRP11kR123kR14360R135C103DG100C9T33DA18.2k6T2TC110.01F247H12V2T3T2T51RL3DG13020R15C120.022FL23DG10010k0.01F0.01F2*T2T4*330pFvLC 正弦波振荡电路 变容二极管调频电路 缓冲隔离级 通过调节发射极电RP1,可以改变射极跟随器的输入阻抗。宽带功率放大器丙类功率放大器电路的调试顺序为:电路的调试顺序为:先分级调整单元电路的静态工作点,测量其性能参数;然后再逐级进行联调,直到整机调试;最后进行整机技术指标测试。由于
19、功放运用的是折线分析方法,其理论计算为近似值。此外单元电路的设计计算没有考虑实际电路中分布参数的影响,级间的相互影响,所以电路的实际工作状态与理论工作状态相差较大,因而元件参数在整机调整过程中,修改比较大,这是在高频电路整机调试中需要特别注意的。1.调频振荡级与缓冲级相联时的常见故障调频振荡级与缓冲级相联时,可能出现振荡级的输出电压幅度明显减小或波形失真变大。产生的主要原因可能是射随器的输入阻抗不够大,使振荡级的输出负载加重,可通过改变射极电阻RP1,提高射随器的输入阻抗(见图4.4.4)。2.功放级与前级级联时的常见故障整机联调时常见故障分析整机联调时常见故障分析 输出功率明显减小,波形失真增大 产生的原因可能是级间相互影响,使末级丙类功放谐振回路的阻抗发生变化,可以重新调谐,使回路谐振。主振级的振荡频率改变或停振 产生的原因可能是后级功放的输出信号较强,经公共地线、电源线或连接导线耦合至主振级,从而改变了振荡回路的参数或主振级的工作状态。可以加电源去耦滤波网络,修改振荡回路参数,或重新布线,减小级间相互耦合。5、设计任务、设计任务设计课题:设计课题:小功率调频发射机设计 主要技术指标要求 发射功率 PA=5mW,负载电阻 RL=50,工作频率f0=6.5 MHz,调制信号幅度 V 时,最大频偏 kHz。已知条件 见本章第一节之三和第三节之五 1mV20mf