函数的最值与导数ppt课件.ppt

上传人(卖家):三亚风情 文档编号:3442841 上传时间:2022-08-31 格式:PPT 页数:25 大小:841.50KB
下载 相关 举报
函数的最值与导数ppt课件.ppt_第1页
第1页 / 共25页
函数的最值与导数ppt课件.ppt_第2页
第2页 / 共25页
函数的最值与导数ppt课件.ppt_第3页
第3页 / 共25页
函数的最值与导数ppt课件.ppt_第4页
第4页 / 共25页
函数的最值与导数ppt课件.ppt_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、函数的最值与导数1函数的最大值f(x0)M一般地,设函数 yf(x)的定义域为 I,如果存在实数 M 满足:对于任意的 xI,都有_;存在 x0 I,使得_那么称 M 是函数 yf(x)的最大值f(x)M2函数的最小值f(x0)M一般地,设函数 yf(x)的定义域为 I,如果存在实数 M 满足:对于任意的 xI,都有_;存在 x0 I,使得_那么称 M 是函数 yf(x)的最小值f(x)M 复旧知新复旧知新0 xyabf(a)f(b)复旧知新复旧知新问题一:问题一:函数极值相关概念函数极值相关概念(1)若函数)若函数y=f(x)在点在点x=b的函数的函数值值f(b)比它在点比它在点x=b附近其

2、他点的函附近其他点的函数值都小大,满足数值都小大,满足f(b)=0且在点且在点x=b附近的左侧附近的左侧f(x)0,右侧右侧f(x)0,则把点则把点b叫做函数叫做函数y=f(x)的的极大值点极大值点,f(b)叫做函数叫做函数y=f(x)的的极大值极大值。(2)若函数若函数y=f(x)在点在点x=a的函数值的函数值f(a)比它在点比它在点x=a附近其他点的附近其他点的函数值都小函数值都小,满足满足f(a)=0且在点且在点x=a附近的左侧附近的左侧f(x)0,则把点则把点a叫做函数叫做函数y=f(x)的的极小值点极小值点,f(a)叫做函数叫做函数y=f(x)的的极小值极小值。复旧知新复旧知新问题二

3、:问题二:一般地,求函数一般地,求函数y=f(x)的极值的方法是什么?的极值的方法是什么?解方程解方程f(x)=0。当。当f(x0)=0时:时:(1)如果在)如果在x0附近附近 的左侧的左侧 f(x)0,右侧,右侧 f(x)0,那么那么f(x0)是极大值;是极大值;(2)如果在)如果在x0附近附近 的左侧的左侧 f(x)0 ,那么那么f(x0)是极小值;是极小值;观察区间观察区间a,b上函数上函数y=f(x)的图象,的图象,你能找出它的极大值和极你能找出它的极大值和极小值吗?小值吗?你能找出它的最大值,最小值吗?你能找出它的最大值,最小值吗?讲授新课讲授新课x1极大值:极大值:f(x2),f(

4、x4),f(x6)极小值:极小值:f(x1),f(x3),f(x5)最大值:最大值:f(a)最小值:最小值:f(x3)oxyx2x3x4x5x6baoxyaby=f(x)y=f(x)oxyaboxyaby=f(x)oxyaby=f(x)性质探究性质探究探究问题探究问题1:开区间上的最值问题:开区间上的最值问题结论结论 在开区间内的连续函数在开区间内的连续函数不一定有最大值与最小值。不一定有最大值与最小值。若有最值,一定在极值点若有最值,一定在极值点处取得。处取得。如图,观察如图,观察(a,b)上的函数)上的函数y=f(x)的图像,它们在(的图像,它们在(a,b)上上有最大值、最小值吗?如果有,

5、最大值和最小值在什么位置取到?有最大值、最小值吗?如果有,最大值和最小值在什么位置取到?性质探究性质探究探究问题探究问题2:闭区间上的最值问题:闭区间上的最值问题y=f(x)abx1x2x4x3yxoaby=f(x)如图,观察如图,观察a,b上的函数上的函数y=f(x)的图像,它们在的图像,它们在a,b上有上有最大值、最小值吗?如果有,最大值和最小值分别是什么?最大值、最小值吗?如果有,最大值和最小值分别是什么?一般地一般地,如果在闭区间,如果在闭区间a,b上函数上函数y=f(x)的图像是一条连续不断的曲线,那么它必定有的图像是一条连续不断的曲线,那么它必定有最大值和最小值。最大值和最小值。结

6、论结论 特别地,若函数特别地,若函数y=f(x)在区间在区间a,b上是单上是单调函数,则最值则在端点处取得。调函数,则最值则在端点处取得。yxoOxyabx3x2x1Oxyabx1x2x3Oxyabx2x1思考思考1观察下列图形观察下列图形,找出函数的找出函数的最最值值并总结规律并总结规律图图1图图3图图2 连续函数在连续函数在a,b上必有最值;上必有最值;并且在极值点或端点处取到并且在极值点或端点处取到.观察右边一个定义在区观察右边一个定义在区间间a,b上的函数上的函数y=f(x)的图象:的图象:发现图中发现图中_是极小值,是极小值,_是极是极大值,在区间上的函数的最大值是大值,在区间上的函

7、数的最大值是_,最小值,最小值是是_。f(x1)、f(x3)f(x2)f(b)f(x3)问题在于如果在没有给出函问题在于如果在没有给出函数图象的情况下,怎样才能数图象的情况下,怎样才能判断出判断出f(x3)是最小值,而是最小值,而f(b)是最大值呢?是最大值呢?x xX X2 2o oa aX X3 3b bx x1 1y yy=f(x)思考思考2追踪练习追踪练习 (2)(2)将将y y=f f(x x)的各极值与的各极值与f f(a a)、f f(b b)()(端点处端点处)比较比较,其中最大的一个为最大值,最小的其中最大的一个为最大值,最小的 一个最小值一个最小值.求求f(x)在在闭区间闭

8、区间a,b上的最值的步骤:上的最值的步骤:(1)(1)求求f f(x x)在区间在区间(a a,b b)内极值内极值(极大值或极小值极大值或极小值);注意注意:在在定义域内定义域内,最值唯一最值唯一;极值不唯一极值不唯一方法总结方法总结例例1.给出下列说法:给出下列说法:(1)函数在其定义域内若有最值与极值,则其极大)函数在其定义域内若有最值与极值,则其极大值便是最大值,极小值便是最小值。值便是最大值,极小值便是最小值。(2)在闭区间上的函数一定有最大值和最小值。)在闭区间上的函数一定有最大值和最小值。(3)若函数在其定义域上有最值,则一定有极值;)若函数在其定义域上有最值,则一定有极值;反之

9、,若有极值,则一定有最值。反之,若有极值,则一定有最值。(4)若函数在给定的区间上有最值,则最多有一个)若函数在给定的区间上有最值,则最多有一个最大值,一个最小值;若函数有极值,则可有多个极最大值,一个最小值;若函数有极值,则可有多个极值。值。其中说法正确的有(其中说法正确的有()牛刀小试牛刀小试(4)例1.已知函数 ,求f(x)在区间0,3上的最大值和最小值 31()443f xxx 240,3fxxx解:0,22(),fxxx 令解得:或舍 列表x(0.2)2(2,3)y-0+y递减递减递增递增43(0)4(3)1ff又,314()43.33f xxx函数-4在 0,上的最大值为4,最小值

10、为-314()43.33f xxx函数-4在 0,上的极小值为-典例精讲典例精讲例例 2.求函数求函数f(x)=48x-x3在区间在区间-3,5上的最值。上的最值。解:解:f(x)=48-3x2=-3(x2-16)=-3(x-4)(x+4)令令 f(x)=0,得,得 x=4或或 x=-4(舍)(舍)当当-3 x 0,函数单调递增;,函数单调递增;当当4 x 5时,时,f(x)0,函数单调递减;,函数单调递减;所以当所以当x=4 时,函数取得极大值,且极大值时,函数取得极大值,且极大值 f(4)=128;又又 f(-3)=-117,f(5)=115所以函数在区间所以函数在区间-3,5 上最大值为

11、上最大值为 128,最小值为最小值为 -117.-117.求函数求函数f(x)=2x3-3x2-12x+5在区间在区间-2,1上的最值上的最值解:解:又又 f(-2)=1,f(1)=-8所以函数在区间所以函数在区间-2,1 上最大值为上最大值为 12,最小值为最小值为-8 巩固练习巩固练习f(x)=6x2-6x-12=6(x2-x-2)=6(x-2)(x+1),令令 f(x)=0,得,得 x=-1或或 x=2(舍)(舍)当当-2 x 0,函数单调递增;,函数单调递增;当当-1 x 1时,时,f(x)0)(1)求f(x)的最小值h(t);(2)若h(t)-2t+m对(0t2)恒成立,求实数m的取

12、值范围23:(1)()()1(,0)f xt x tttxR t 解33,()()1,()1xtf xfttthttt 当时取最小值即 32(2)()()(2)31,()3301()g th ttmttmg tttt 令由得=1或舍 单调递减单调递减10 单调递增单调递增极大值极大值x()g t()g t(0,1)(1,2)1 m()(0,2)(1)1g tgm 在内有最大值()2(0,2)()0(0,2),10h ttmg tm 在内恒成立等价于在内恒成立 即等价于(1,)m的取值范围是322()233812.(1),;(2)0,3,(),.f xxaxbxcxxa bxf xcc设函数在及

13、时取得极值求的值若对于任意的都有成立求的取值范围:(1)3,4;(2)(,1)(9,)ab 答案有关恒成立问题,一般是转化为求函数的最值问题求解时首先要确定函数,看哪一个变量的范围已知,以已知范围的变量为自变量确定函数maxmin()();()()f xf xf xf x一般地,恒成立恒成立课堂小结课堂小结(1)求函数求函数y=f(x)在开区间在开区间(a,b)内的极值;内的极值;(2)计算端点处的函数值计算端点处的函数值f(a),f(b)并将其与函数并将其与函数y=f(x)的各极值的各极值比较,其中最大的一个是最大值,最小的一个是最小值。比较,其中最大的一个是最大值,最小的一个是最小值。作业:作业:课本P31页:练习 (2)(4)题练习册:练习册:课时作业(9)布置作业布置作业

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(函数的最值与导数ppt课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|