《独立性检验》课件1(北师大版选修1-2).ppt

上传人(卖家):三亚风情 文档编号:3462322 上传时间:2022-09-02 格式:PPT 页数:19 大小:900.50KB
下载 相关 举报
《独立性检验》课件1(北师大版选修1-2).ppt_第1页
第1页 / 共19页
《独立性检验》课件1(北师大版选修1-2).ppt_第2页
第2页 / 共19页
《独立性检验》课件1(北师大版选修1-2).ppt_第3页
第3页 / 共19页
《独立性检验》课件1(北师大版选修1-2).ppt_第4页
第4页 / 共19页
《独立性检验》课件1(北师大版选修1-2).ppt_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、问题:数学家庞加莱每天都从一家面包店买一块1000g 的面包,并记录下买回的面包的实际质量。一年后,这位数学家发现,所记录数据的均值为950g。于是庞加莱推断这家面包店的面包分量不足。假设“面包分量足”,则一年购买面包的质量数据的平均值应该不少于1000g;“这个平均值不大于950g”是一个与假设“面包分量足”矛盾的小概率事件;这个小概率事件的发生使庞加莱得出推断结果。一:假设检验问题的原理假设检验问题由两个互斥的假设构成,其中一个叫做原假设,用H0表示;另一个叫做备择假设,用H1表示。例如,在前面的例子中,原假设为:H0:面包分量足,备择假设为 H1:面包分量不足。这个假设检验问题可以表达为

2、:H0:面包分量足 H1:面包分量不足二:求解假设检验问题考虑假设检验问题:H0:面包分量足 H1:面包分量不足1.在H0成立的条件下,构造与H0矛盾的小概率事件;2.如果样本使得这个小概率事件发生,就能以一定把握断言H1成立;否则,断言没有发现样本数据与H0相矛盾的证据。求解思路:三:二个概念这种变量的不同取“值”表示个体所属的不同类别,这类变量称为分类变量1.分类变量 对于性别变量,取值为:男、女 分类变量在现实生活中是大量存在的,如是否吸烟,是否患肺癌,宗教信仰,国别,年龄,出生月份等等。利用随机变量K2来确定在多大程度上可以认为”两个分类变量有关系”的方法称为两个分类变量的独立性检验.

3、(为假设检验的特例)吸烟与肺癌列联表吸烟与肺癌列联表不患肺癌不患肺癌患肺癌患肺癌总计总计不吸烟不吸烟77757775424278177817吸烟吸烟20992099494921482148总计总计98749874919199659965为了调查吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果(单位:人)列联表在不吸烟者中患肺癌的比重是 在吸烟者中患肺癌的比重是 说明:吸烟者和不吸烟者患肺癌的可能性存在差异,吸烟者患肺癌的可能性大0.54%2.28%1)通过图形直观判断两个分类变量是否相关:三维柱状图2)通过图形直观判断两个分类变量是否相关:二维条形图3)通过图形直观判断两

4、个分类变量是否相关:患肺癌比例不患肺癌比例 独立性检验H0:吸烟和患肺癌之间没有关系 H1:吸烟和患肺癌之间有关系通过数据和图表分析,得到结论是:吸烟与患肺癌有关结论的可靠程度如何?用 A 表示“不吸烟”,B 表示“不患肺癌”则 H0:吸烟和患肺癌之间没有关系 “吸烟”与“患肺癌”独立,即A与B独立P(AB)=P(A)P(B)P(AB)=P(A)P(B)等价于等价于 吸烟与肺癌列联表吸烟与肺癌列联表不患肺癌不患肺癌患肺癌患肺癌总计总计不吸烟不吸烟a ab ba+ba+b吸烟吸烟c cd dc+dc+d总计总计a+ca+cb+db+da+b+c+da+b+c+da a+b ba a+c ca a

5、P P(A A),P P(B B),P P(A AB B)n nn nn n其其 中中 n n=a a+b b+c c+d dacac,a+bc+da+bc+d a c+d c a+b,a c+d c a+b,adbcaa+ba+caa+ba+cnnnnnn2 22 2n n(a ad d-b bc c)K K=(a a+b b)(c c+d d)(a a+c c)(b b+d d)独立性检验0.adbcad-bc 越小,说明吸烟与患肺癌之间的关系越弱,ad-bc 越小,说明吸烟与患肺癌之间的关系越弱,ad-bc 越大,说明吸烟与患肺癌之间的关系越强ad-bc 越大,说明吸烟与患肺癌之间的关系

6、越强引入一个随机变量作为检验在多大程度上可以认为“两个变量有关系”的标准。1)如果P(m10.828)=0.001表示有99.9%的把握认为”X与Y”有关系;2)如果P(m7.879)=0.005表示有99.5%的把握认为”X与Y”有关系;3)如果P(m6.635)=0.01表示有99%的把握认为”X与Y”有关系;4)如果P(m5.024)=0.025表示有97.5%的把握认为”X与Y”有关系;5)如果P(m3.841)=0.05表示有95%的把握认为”X与Y”有关系;6)如果P(m2.706)=0.010表示有90%的把握认为”X与Y”有关系;7)如果m2.706),就认为没有充分的证据显示

7、”X与Y”有关系;设有两个分类变量X和Y它们的值域分别为x1,x2和y1,y2其样本频数列表(称为22列联表)为y y1 1y y2 2总计总计x x1 1a ab ba+ba+bx x2 2c cd dc+dc+d总计总计a+ca+cb+db+da+b+c+da+b+c+d22列联表22()()()()n ad bcKa b c d a c b d()2 2P(k m)P(k m)适用观测数据a、b、c、d不小于5 独立性检验 吸烟与肺癌列联表吸烟与肺癌列联表不患肺癌不患肺癌患肺癌患肺癌总计总计不吸烟不吸烟7775427817吸烟吸烟2099492148总计总计9874919965通过公式计

8、算2242 209956.6327817 2148 9874 91K9965(7775 49)独立性检验已知在 成立的情况下,0H2(6.635)0.01P K 即在 成立的情况下,K2 大于6.635概率非常小,近似为0.010H现在的K2=56.632的观测值远大于6.635分类变量之间关系条形图柱形图列联表独立性检验背景分析例1.在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶,而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶.分别利用图形和独立性检验方法判断是否有关?你所得的结论在什么范围内有效?例2.为考察高中生性别与是否喜欢数学课程之间的关系,在某城市

9、的某校高中生中随机抽取300名学生,得到如下列联表:性别与喜欢数学课程列联表喜欢数学课程喜欢数学课程不喜欢数学课程不喜欢数学课程 总计总计 男男 37 37 85 85 122 122 女女 35 35 143 143 178 178 总计总计 72 72 228 228 300 300由表中数据计算得 ,高中生的性别与是否喜欢数学课程之间是否有关系?为什么?2 2K 4.513K 4.513acdb解:P111独立性检验基本的思想类似反证法(1)假设结论不成立,即“两个分类变量没有关系”.(2)在此假设下随机变量 K2 应该很能小,如果由观测数据计算得到K2的观测值k很大,则在一定程度上说明假设不合理.(3)根据随机变量K2的含义,可以通过评价该假设不合理的程度,由实际计算出的,说明假设合理的程度为99.9%,即“两个分类变量有关系”这一结论成立的可信度为约为99.9%.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(《独立性检验》课件1(北师大版选修1-2).ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|