1、二、几个初等函数的麦克劳林公式二、几个初等函数的麦克劳林公式 第三节一、泰勒公式的建立一、泰勒公式的建立三、泰勒公式的应用三、泰勒公式的应用 应用用多项式近似表示函数理论分析近似计算泰勒(Taylor)公式 第三三章 特点:)(01xp)(0 xf)(0 xf 一、泰勒公式的建立一、泰勒公式的建立)(xfxy)(xfy o)()(000 xxxfxf)(1xp以直代曲以直代曲0 x)(1xp)(01xp在微分应用中已知近似公式:需要解决的问题如何提高精度?如何估计误差?xx 的一次多项式1.求求 n 次近似多项式次近似多项式要求要求:,)(xpn)(0!212xpan,)(0 xf ,)(0)
2、(!1xpannnn)(0)(xfn故)(xpn)(0 xf)(00 xxxf!21!1nnnxxxf)(00)(!1n200)(xxxf!21令)(xpn则)(xpn)(xpnnan!)()(xpnn)(00 xpan,)(0 xf,)()(00 xfxpn)(01xpan,)(0 xf 1a)(202xxa10)(nnxxan2!2 a20)()1(nnxxann,)()(00 xfxpn)()(,0)(0)(xfxpnnn0annxxaxxaxxa)()()(020201)0(之间与在nx )()(10nnxxxR )(2)1()(0)(xnRnnnn2.余项估计余项估计)()()(xp
3、xfxRnn令(称为余项),)(0 xRn)(0 xRn0)(0)(xRnn10)()(nnxxxRnnxnR)(1()(011 )(1()(011nnxnR1022)()1()(nnxnnR!)1()()1(nRnn则有)(0 xRn0)(0 xRn0)(0)(xRnn0 x)01(之间与在xx)102(之间与在x)()()(xpxfxRnn10)()(nnxxxR!)1()()1(nRnn)0(之间与在xx,0)()1(xpnn10)1()(!)1()()(nnnxxnfxR)()()1()1(xfxRnnn时的某邻域内当在Mxfxn)()1(0)0(之间与在xx10!)1()(nnxxn
4、MxR)()()(00 xxxxoxRnn公式 称为 的 n 阶泰勒公式阶泰勒公式.)(xf公式 称为n 阶泰勒公式的拉格朗日余项拉格朗日余项.泰勒中值定理泰勒中值定理:内具有的某开区间在包含若),()(0baxxf1n直到阶的导数,),(bax时,有)(xf)(0 xf)(00 xxxf200)(!2)(xxxf nnxxnxf)(!)(00)()(xRn其中10)1()(!)1()()(nnnxxnfxR则当)0(之间与在xx公式 称为n 阶泰勒公式的佩亚诺佩亚诺(Peano)余项余项.在不需要余项的精确表达式时,泰勒公式可写为)(xf)(0 xf)(00 xxxf200)(!2)(xxx
5、f nnxxnxf)(!)(00)()(0nxxo)()(0nnxxoxR注意到特例特例:(1)当 n=0 时,泰勒公式变为)(xf)(0 xf)(0 xxf(2)当 n=1 时,泰勒公式变为给出拉格朗日中值定理)(xf)(0 xf)(00 xxxf20)(!2)(xxf 可见)(xf)(0 xf)(00 xxxf201)(!2)()(xxfxR 误差)(xf)(0 xf)(00 xxxf10)1()(!)1()(nnxxnf200)(!2)(xxxf nnxxnxf)(!)(00)(fd)0(之间与在xx)0(之间与在xx)0(之间与在xx)0(之间与在xx称为麦克劳林(麦克劳林(Macla
6、urin)公式)公式.,)10(,00 xx则有)(xf)0(fxf)0(1)1(!)1()(nnxnxf2!2)0(xf nnxnf!)0()(在泰勒公式中若取)(xf)(0 xf)(00 xxxf10)1()(!)1()(nnxxnf200)(!2)(xxxf nnxxnxf)(!)(00)()0(之间与在xx)(xf)0(fxf)0(,)()1(Mxfn则有误差估计式1!)1()(nnxnMxR2!2)0(xf nnxnf!)0()(若在公式成立的区间上由此得近似公式二、几个初等函数的麦克劳林公式二、几个初等函数的麦克劳林公式xexf)()1(,)()(xkexf),2,1(1)0()(
7、kfkxe1x!33x!nxn)(xRn!22x其中)(xRn!)1(n)10(1nxxe)sin(xxxfsin)()2()()(xfkxsinx!33x!55x!)12(12mxm)(2xRm其中)(2xRm)sin(212mx2k2sin)0()(kfkmk2,012 mk,)1(1m),2,1(m1)1(m)10(12mx!)12(m)cos()1(xm!)2(2mxmxxfcos)()3(类似可得xcos1!22x!44x)(12xRm其中)(12xRm!)22(m)1(cos)1(1mxm)10(m)1(22mx)1()1()()4(xxxf)()(xfk)1(x1x2xnx)(x
8、Rn其中)(xRn11)1(!)1()()1(nnxxnn)10(kxk)1)(1()1()1()1()0()(kfk),2,1(k!2 )1(!n)1()1(n)1()1ln()()5(xxxf已知)1ln(xx22x33xnxn)(xRn其中)(xRn11)1(1)1(nnnxxn)10(1)1(n类似可得)()(xfkkkxk)1(!)1()1(1),2,1(k三、泰勒公式的应用三、泰勒公式的应用1.在近似计算中的应用在近似计算中的应用 误差1!)1()(nnxnMxRM 为)()1(xfn在包含 0,x 的某区间上的上界.)(xf)0(fxf)0(2!2)0(xf nnxnf!)0()
9、(2.利用泰勒公式求极限利用泰勒公式求极限内容小结内容小结1.泰勒公式泰勒公式其中余项)(0nxxo当00 x时为麦克劳林公式麦克劳林公式.)(xf)(0 xf)(00 xxxf200)(!2)(xxxf nnxxnxf)(!)(00)()(xRn10)1()(!)1()()(nnnxxnfxR)0(之间与在xx2.常用函数的麦克劳林公式常用函数的麦克劳林公式(P140 P142),xe,)1ln(x,sin x,cosx)1(x3.泰勒公式的应用泰勒公式的应用(1)近似计算(3)其他应用求极限.(2)利用多项式逼近函数,xsin例如4224642024612!)12()1(9!917!715
10、!513!311sinnnxxxxxxxn)(2nxo!33xxy!5!353xxxy!7!5!3753xxxxyxysinxy xsin泰勒多项式逼近泰勒多项式逼近12!)12()1(9!917!715!513!311sinnnxxxxxxxn)(2nxoxsin42246420246xysin!9!7!5!39753xxxxxy!11!9!7!5!3119753xxxxxxy泰勒多项式逼近泰勒多项式逼近思考与练习思考与练习 计算.3cos2lim402xxexx)(!2114422xoxxex)(!4!21cos542xoxxx)()!412!21(3cos2442xoxxex127)(lim4441270 xxoxx解解:原式泰勒泰勒(1685 1731)英国数学家,他早期是牛顿学派最优秀的代表人物之一,重要著作有:正的和反的增量方法(1715)线性透视论(1719)他在1712 年就得到了现代形式的泰勒公式.他是有限差分理论的奠基人.麦克劳林麦克劳林(1698 1746)英国数学家,著作有:流数论(1742)有机几何学(1720)代数论(1742)在第一本著作中给出了后人以他的名字命名的麦克劳林级数麦克劳林级数.