自考-概率论与数理统计课件20课时.ppt

上传人(卖家):三亚风情 文档编号:3516332 上传时间:2022-09-10 格式:PPT 页数:346 大小:8.82MB
下载 相关 举报
自考-概率论与数理统计课件20课时.ppt_第1页
第1页 / 共346页
自考-概率论与数理统计课件20课时.ppt_第2页
第2页 / 共346页
自考-概率论与数理统计课件20课时.ppt_第3页
第3页 / 共346页
自考-概率论与数理统计课件20课时.ppt_第4页
第4页 / 共346页
自考-概率论与数理统计课件20课时.ppt_第5页
第5页 / 共346页
点击查看更多>>
资源描述

1、按照按照一定的顺序一定的顺序所有排列所有排列n(n1)(n2)(nm1)n(n1)(n2)321n!111 加法原理和乘法原理加法原理和乘法原理 问题问题 1.从甲地到乙地,可以乘火车,也可以乘汽车,还从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有可以乘轮船。一天中,火车有4 班班,汽车有汽车有2班,轮船有班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法少种不同的走法?分析分析:从甲地到乙地有从甲地到乙地有3类方法类方法,第一类方法第一类方法,乘火车,有乘火车,有4种方法种方法;第二类方法第二类方法

2、,乘汽车,有乘汽车,有2种方法种方法;第三类方法第三类方法,乘轮船乘轮船,有有3种方法种方法;所以所以 从甲地到乙地共有从甲地到乙地共有 4+2+3=9 种种方法。方法。问题问题 2.如图如图,由由A村去村去B村的道路有村的道路有3条,由条,由B村去村去C村的村的道路有道路有2条。从条。从A村经村经B村去村去C村,共有多少种不同的走村,共有多少种不同的走法法?A村B村C村北南中北南 分析分析:从从A村经村经 B村去村去C村有村有2步步,第一步第一步,由由A村去村去B村有村有3种方法种方法,第二步第二步,由由B村去村去C村有村有2种方法种方法,所以所以 从从A村经村经 B村去村去C村共有村共有

3、3 2=6 种不同的方法。种不同的方法。目目 录录第一章第一章 随机事件与概率随机事件与概率(重点重点)第二章第二章 随机变量及其概率分布随机变量及其概率分布(重点重点)第三章第三章 多维随机变量及其概率分布多维随机变量及其概率分布(重点重点)第四章第四章 随机变量的数字特征随机变量的数字特征(重点重点)第五章第五章 大数定律及中心极限定理大数定律及中心极限定理第六章第六章 统计量及其抽样分布统计量及其抽样分布第七章第七章 参数估计参数估计第八章第八章 假设检验假设检验第九章第九章 回归分析回归分析第一章第一章 随机事件与概率随机事件与概率 1.1 1.1 随机事件随机事件 1.2 1.2 概

4、率概率 1.3 1.3 条件概率条件概率 1.4 1.4 事件的独立性事件的独立性 1.1.1 随机现象随机现象 现象按照必然性分为两类现象按照必然性分为两类:一类是确定性现象确定性现象;一类是随机现象随机现象。在一定条件下,可能出现这样的结果,也可能出现那样的结果,我们预先无法断言,这类现象成为随机现象随机现象。1.1 随机事件随机事件 1.1.2 随机试验和样本空间随机试验和样本空间试验的例子试验的例子E1:抛一枚硬币,观察正面H、反面T出现的情况;E2:掷一颗骰子,观察出现的点数;E3:记录110报警台一天接到的报警次数;E4:在一批灯泡中任意抽取一个,测试它的寿命;E5:记录某物理量的

5、测量误差;E6:0 1,在区间 上任取一点,记录它的坐标。上述试验的特点:上述试验的特点:1.试验的可重复性试验的可重复性可在相同条件下重复进行可在相同条件下重复进行;2.一次试验结果的随机性一次试验结果的随机性一次试验之前无法确定具体一次试验之前无法确定具体 是哪种结果出现,但能确定所有的可能结果。是哪种结果出现,但能确定所有的可能结果。3.全部试验结果的可知性全部试验结果的可知性所有可能的结果是预先可知所有可能的结果是预先可知 的。的。在概率论中,将具有上述三个特点的试验成为在概率论中,将具有上述三个特点的试验成为随机试验随机试验,简称简称试验试验。随机试验常用。随机试验常用E表示。表示。

6、1、样本空间样本空间:试验的试验的所有可能结果所有可能结果所组成的所组成的集合集合称为称为试验试验E的样本空间的样本空间,记为记为.样本空间样本空间2、样本点样本点:试验的试验的每一个可能出现的结果每一个可能出现的结果成为一个成为一个样本点样本点,用字母用字母表示表示.1H,T;kE下面分别写出上述各试验下面分别写出上述各试验 所对应的样本空间所对应的样本空间21 2 3 4 5 6,;301 2 3,;4|0;t t 5|,;t t 6|01,.t t 1.1.3 随机事件随机事件1.定义定义 样本空间的任意一个子集子集称为随机事件随机事件,简称“事件”.记作A、B、C等。例在试验E2中,令

7、A表示“出现奇数点”,A就是一个随机事件。A还可以用样本点的集合形式表示,即A=1,3,5.它是样本空间的一个子集。事件发生事件发生:例如,在试验E2中,无论掷得1点、3点还是5点,都称这一次试验中事件A发生了。基本事件基本事件:样本空间中仅包含一个样本点的单点子集。比如,比如,在试验E1中H表示“正面朝上”,就是个基本事基本事件件。两个特殊的事件两个特殊的事件必然事件:;不可能事件:.既然事件是一个集合,因此有关事件间的关系、运算及运算规则也就按集合间的关系、运算及运算规则来处理。1.包含关系与相等包含关系与相等:“事件事件 A发生必有事件发生必有事件B发发生生”,记为,记为A B。AB A

8、 B且且B A.1.1.4、事件之间的关系、事件之间的关系A BAB2.和事件:和事件:“事件事件A与事件与事件B至少有一个发生至少有一个发生”,记作,记作A B或或A+B。推广:推广:n个事件个事件A1,A2,An至少有一个发生,记作至少有一个发生,记作1niiA显然:1.A A+B,B A+B;2.若若A B,则,则A+B=B。3.积事件积事件:事件事件A与事件与事件B同时发生,记作同时发生,记作 A B 或或AB。推广:推广:n个事件个事件A1,A2,An同时发生,记作同时发生,记作 A1A2An显然:1.AB A,AB B;2.若若A B,则,则AB=A。4.差事件差事件:AB称为称为

9、A与与B的差事件的差事件,表示事件表示事件 A发生而事件发生而事件B不发生不发生显然:显然:1.A-B A;2.若若A B,则,则A B=。5.互不相容事件(也称互斥的事件)互不相容事件(也称互斥的事件)即事件即事件A与与事件事件B不可能同时发生不可能同时发生。AB 。ABAB=6.对立对立事件事件 A+B ,且且AB ,称称为为A A的的对对立立事事件件;A A记记作作B B 思考思考:事件事件A和事件和事件B互不相容与事件互不相容与事件A和事件和事件B互互为对立事件的区别为对立事件的区别.显然有:显然有:1.AA2.,.3.ABABAAB事件的运算律事件的运算律1、交换律:、交换律:A+B

10、B+A,ABBA。,.kkkkkkkkABA BABABAAAA可推广2、结合律、结合律:(A+B)+C=A+(B+C),(AB)CA(BC)。3、分配律、分配律:(A+B)C(AC)+(BC),(AB)+C(A+C)(B+C)。4、对偶、对偶(De Morgan)律律:P160 (1)ABC(2)ABC例例1-4、设A、B、C表示三个事件,试以A,B,C的运算表示以下事件:(1)仅A发生;(2)A,B,C都发生;(3)A,B,C都不发生;(4)A,B,C不全发生;(5)A,B,C恰有一个发生。(3)ABC_(4)ABC(5)ABCABCABC 解解例例:甲、乙、丙三人各向目标射击一发子弹,以

11、:甲、乙、丙三人各向目标射击一发子弹,以A A、B B、C C分分别表示甲、乙、丙命中目标,试用别表示甲、乙、丙命中目标,试用A A、B B、C C的运算关系表示下的运算关系表示下列事件:列事件:12345:AAAAA“至少有一人命中目标”“恰有一人命中目标”“恰有两人命中目标”“三人均命中目标”“三人均未命中目标”ABCABCABCABCABCABCABCABCABC 本节课主要讲授:本节课主要讲授:1.随机现象;随机现象;2.随机试验和样本空间;随机试验和样本空间;3.随机事件的概念;随机事件的概念;4.随机事件的关系和运算(随机事件的关系和运算(重点重点)。)。小小 结结).(A.,)(

12、,).(,.,AfAfnAfAnnAnAnnnnAA的概率就是事件其实这个值的稳定值我们称这个常数为频率数越来越稳定于某一个常会频率的大量增加着试验重复次数通过实践人们发现,随并记成发生的频率称为事件比值发生的频数称为事件次数发生的事件次试验中在这次试验进行了在相同的条件下1.2 概概 率率1.2.1 频率与概率频率与概率nAn)(Afn频率的性质:频率的性质:111 012013.nnnnnnnnnnkkkfAffABfABfAfBfAfA ()();()(),();()若若与与互互不不相相容容,有有()()()同同理理可可有有:()()试验者试验者德.摩根204810610.5181蒲丰4

13、04020480.5069K.皮尔逊1200060190.5016K.皮尔逊24000120190.5005“投掷硬币”试验的几个著名记录111 012013.()();()(),();()若 与 互不相容,有()()()同理可有:()()mmiiiiP APPABP ABP AP BPAP A 频率是概率的近似值,概率频率是概率的近似值,概率P(A)也应有类似特征也应有类似特征:2.2.等可能性等可能性:每个基本事件发生的可能性相同.1.2.2 古典概型古典概型 理论上理论上,具有下面两个特点的随机试验的概率模型具有下面两个特点的随机试验的概率模型,称为称为古典概型古典概型:1.1.有限性:

14、有限性:基本事件的总数是有限的,换句话说样本空间仅含有有限个样本点;设事件A中所含样本点个数为m,样本空间中样本点总数为n,则有()().mAP AnmAP An中样本点数中样本点总数也即所包含的基本事件数基本事件总数古典概型中的概率古典概型中的概率:31P(A)=n62m 例例1-7 掷一枚质地均匀的骰子掷一枚质地均匀的骰子,求出现奇数点的概率。求出现奇数点的概率。事件事件“出现奇数点出现奇数点”用用A表示表示,则则A=1,3,5,所含样所含样本本点数点数m=3,从而从而解解:显然样本空间显然样本空间=1,2,3,4,5,6,样本点总数样本点总数n=6,解解1:试出现正面用试出现正面用H表示

15、表示,出现反面用出现反面用T表示表示,则样本空间则样本空间=HHH,HHT,HTH,THH,HTT,TTH,THT,TTT,样本点总数样本点总数n=8.A=TTH,THT,HTT,B=HHH,C=HHH,THH,HTH,HHT,TTH,THT,HTT所以所以A,B,C中样本点数分别为中样本点数分别为mA=3,mB=1,mC=7,例例1-8 抛一枚均匀硬币抛一枚均匀硬币3次次,设事件设事件A为为“恰有恰有1次出现正次出现正面面”,B为为“3次都出现正面次都出现正面”,C为为“至少一次出现正面至少一次出现正面”,试求试求 P(A),P(B),P(C).则则P(A)=mAn=38,P(B)=mBn=

16、18,P(C)=mCn=78.例例1-9 从从1,2,9这这9个数字中任意取一个数个数字中任意取一个数,取后放回取后放回,而而后再取一数后再取一数,试求取出的两个数字不同的概率试求取出的两个数字不同的概率.解解 基本事件总数基本事件总数n=9*9=81,设设A表示表示“取出的两个数字不取出的两个数字不同同”.A包含的基本事件数包含的基本事件数9*8,因为第一次取数有,因为第一次取数有9中可能中可能取法取法,为保证两个数不同为保证两个数不同,第二次取数应从另外的第二次取数应从另外的8个数中选个数中选取取,有有8中可能取法中可能取法,m=9*8=72,故故 P(A)=mn=7281=89 2253

17、2813.28CCmP AnC 例例1-10 袋中有袋中有5个白球个白球3个黑球个黑球,从中任取两个从中任取两个,试求取到的试求取到的两个球颜色相同的概率。两个球颜色相同的概率。解解 从从8个球中任意取两个个球中任意取两个,共有共有 种取法种取法,即基本事件总即基本事件总 数数 .记记A表示表示“取到的两个球颜色相同取到的两个球颜色相同”,A包含两种可能包含两种可能:全是全是白球白球或全是或全是黑球黑球.全是白球有全是白球有 种取法种取法,全是黑球有全是黑球有 种取法种取法,由加法原理由加法原理 知知,A的取法共的取法共 中中,即即A包含的基本事件数包含的基本事件数 m=28C28nC 25C

18、23C2253CC 2253CC 故故 21009730.0294.mP AnA (2)采取放回抽样:第一次抽取共有采取放回抽样:第一次抽取共有100种取法,取后放回,种取法,取后放回,第二次抽取仍有第二次抽取仍有100种取法,即基本事件总数种取法,即基本事件总数n=1002.在这种在这种 情况下,情况下,A中包含的基本事件数中包含的基本事件数m仍为仍为97*3,故,故 29730.0291.100mP An 例例1-11 一批产品共有一批产品共有100件,其中件,其中3件次品,现从这批产品中接件次品,现从这批产品中接连抽取两次,每次抽取一件,考虑两种情况:连抽取两次,每次抽取一件,考虑两种情

19、况:(1)不放回抽样:第一次取一件不放回,第二次再抽取一件;)不放回抽样:第一次取一件不放回,第二次再抽取一件;(2)放回抽样:第一次抽取一件检查后放回,第二次再抽取一件)放回抽样:第一次抽取一件检查后放回,第二次再抽取一件.试分别针对上述两种情况,求事件试分别针对上述两种情况,求事件A“第一次取到正品,第二次取到次品第一次取到正品,第二次取到次品的概率的概率”。解解 (1)采取不放回抽样:由于要考虑采取不放回抽样:由于要考虑2件产品取出的顺序,接件产品取出的顺序,接 连两次抽取共有连两次抽取共有 种取法,即基本事件总数种取法,即基本事件总数 .第一第一 次次 取到正品共有取到正品共有97种取

20、法,第二次取到次品共有种取法,第二次取到次品共有3种取法,种取法,则则A中包含的基本事件数是中包含的基本事件数是m=97*3,故,故2100A2100nA 性质性质 1-10()1,()0.P AP 性质性质 1-3(加法公式加法公式)对于任意事件A,B有 P(A+B)=P(A)+P(B)-P(AB).特别地,当A与B互不相容时,P(A+B)=P(A)+P(B).性质性质1-3可推广可推广:对于任意事件A,B,C有 P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC).当A1,A2,An互不相容时:P(A1+A2+An)=P(A1)+P(A2)+P(

21、An).特别地,当A B时,P(A-B)=P(A)-P(B),且P(A)P(B).性质性质 1-4 P(A)1 P(A).1.2.3 概率的性质概率的性质性质性质1-2(减法公式减法公式)P(A-B)=P(A)-P(AB).例例1-13 已知12种产品中有2件次品,从中任意抽取4件产品,求至少取得1件次品(记为A)的概率.解解 设B表示“没抽到次品”,则B=A,而由古典概型的概率 求法可得41041214(),33CP BC19()1()1().33P AP AP B 性质1-5,()()()P ABP AP AB ()()()P BAP BP AB例例1-14 设A,B为两个随机事件,P(A

22、)=0.5,P(A+B)=0.8,P(AB)=0.3,求求P(B).解解 由P(A+B)=P(A)+P(B)-P(AB),得 P(B)=P(A+B)-P(A)+P(AB)=0.8-0.5+0.3=0.6.解解 由性质1-5可知,例例1-15 设A,B两个随机事件,P(A)=0.8,P(AB)=0.5,求P(AB).P(AB)=P(A)-P(AB)=0.8-0.5=0.3例例1-16 设设A与与B互不相容互不相容,P(A)=0.5,P(B)=0.3,求求P(AB).AB 解解 P(AB)=P()=1-P(A+B)=1-P(A)+P(B)=1-(0.5+0.3)=0.2 小小 结结本节课的重点:本

23、节课的重点:(1)古典概型事件概率的计算;)古典概型事件概率的计算;(2)概率的性质及其应用)概率的性质及其应用.1.3.1 条件概率与乘法公式条件概率与乘法公式1.3 条件概率条件概率1 定义定义:已知事件A发生的条件下,事件B发生的概率称为A条件下B的条件概率,记作P(B|A).定义定义1-2 设A,B是两个事件,且P(B)0,称 ()|()P ABPA BP B 为在事件B发生条件下事件A发生的概率.显然,P(A)0时,()|()P ABP B AP A 计算条件概率有两个基本的方法:计算条件概率有两个基本的方法:一、是用定义计算;二、是在古典概型中利用古典概型的计算方法直接计算.例例1

24、-18 在全部产品中有在全部产品中有4%是废品是废品,有有72%为一等品为一等品.现从现从中任取一件为合格品中任取一件为合格品,求它是一等品的概率求它是一等品的概率.解解 设A表示“任取一件为合格品”,B表示“任取一件为一等品”,显然B A,P(A)=96%,P(AB)=P(B)=72%,则所求概率为()72()0.75.(A)96P AB%P B AP%例例1-19 盒中有黄白两色的乒乓球盒中有黄白两色的乒乓球,黄色球黄色球7个个,其中其中3个是新个是新球球;白色球白色球5个个,其中其中4个是新球个是新球.现从中任取一球是新球现从中任取一球是新球,求它求它是白球的概率是白球的概率.解解1 设

25、A表示“任取一球为新球”,B表示“任取一球为白球”,由古典概型的等可能性可知,所求概率为4().7P B A 解解2 设A表示“任取一球为新球”,B表示“任取一球为白球”,754(),(),(),121212P AP BP AB由条件概率公式可得4()412().7()712P ABP B AP B解解 设A表示“第一次取球取出的是白球”,B表示“第二次取球取出的是黑球”,所求概率为P(B|A).由于第一次取球取出的是白球,所以第二次取球时盒中有5个黑球2个白球,由古典概型的概率计算方法得5().7P B A 例例1-20 盒中有盒中有5个黑球个黑球3个白球个白球,连续不放回的从中取两连续不放

26、回的从中取两次球次球,每次取一个每次取一个,若已知第一次取出的是白球若已知第一次取出的是白球,求第二次取求第二次取出的是黑球的概率出的是黑球的概率.概率的乘法公式:概率的乘法公式:(1)当当P(A)0时,有时,有P(AB)=P(A)P(B|A).(2)当当P(B)0时,有时,有P(AB)=P(B)P(A|B).(3)设设P(AB)0时,则时,则P(ABC)=P(A)P(B|A)P(C|AB).例例1-21 在在10个产品中个产品中,有有2件次品件次品,不放回的抽取不放回的抽取2次产品次产品,每每次取一个次取一个,求取到的两件产品都是次品的概率求取到的两件产品都是次品的概率.解解 设A表示“第一

27、次取产品取到次品”,B表示“第二次取产品取到次品”,则 故 211(),(|),1059P AP B A111()()(|).5945P ABP A P B A 例例1-22 设设P(A)=0.8,P(B)=0.4,P(B|A)=0.25,求求P(A|B).()()(|)0.80.250.2,P ABP A P B A ()0.21(|).()0.42P ABP A BP B 解解1.3.2 全概率公式全概率公式定义定义1-3 设事件A1,A2,An满足如下两个条件:(1)A1,A2,An互不相容,且P(Ai)0,i=1,2,n;(2)A1+A2+An=,即A1,A2,An至少有一个发生,则称

28、A1,A2,An为样本空间的一个划分划分.全概率公式全概率公式 设随机试验对应的样本空间为,设A1,A2,An是样本空间的一个划分,B是任意一个事件,则1()()(|).niiiP BP A P B A 注:全概率公式求的是注:全概率公式求的是无条件概率无条件概率例例1-24 盒中有盒中有5个白球个白球3个黑球个黑球,连续不放回地从中取两连续不放回地从中取两次球次球,每次取一个每次取一个,求第二次取球取到白球的概率求第二次取球取到白球的概率.5345(),(),(|),(|),8877P AP AP B AP B A 解解 设A表示“第一次取球取到白球”,B表示“第二次取球取到白球”,则由全概

29、率公式得.8575837485)|()()|()()(ABPAPABPAPBP例例1-25 在某工厂中有甲、乙、丙三台机器生产同一型号的产品在某工厂中有甲、乙、丙三台机器生产同一型号的产品,它们的产量各占它们的产量各占30%,35%,35%,并且在各自的产品中废品率分别为并且在各自的产品中废品率分别为5%,4%,3%.求从该厂的这种产品中任取一件是废品的概率求从该厂的这种产品中任取一件是废品的概率.解解 设A1表示“从该厂的这种产品中任取一件产品为甲所生产”,A2表示“从该厂的这种产品中任取一件产品为乙所生产”,A3表示“从该厂的这种产品中任取一件产品为丙所生产”,B表示“从该厂的这种产品中任

30、取一件为次品”,则P(A1)=30%,P(A2)=35%,P(A3)=35%,P(B|A1)=5%,P(B|A2)=4%,P(B|A3)=3%.由全概率公式得31()()(|)30%5%35%4%35%3%3.95%.iiiP BP A P B A 例例1-26 设在设在n(n1)张彩票中有张彩票中有1张奖券张奖券,甲、乙两人依次甲、乙两人依次摸一张彩票摸一张彩票,分别求甲、乙两人摸到奖券的概率分别求甲、乙两人摸到奖券的概率.111(|)0,(|),(),(),1nP B AP B AP AP Annn 解解 设A表示“甲摸到奖券”,B表示“乙摸到奖券”.现在目的是求P(A),P(B),显然P

31、(A)=1/n.因为A是否发生直接关系到B的概率,即于是由全概率公式得 这个例题说明这个例题说明,购买彩票时购买彩票时,不论先买后买不论先买后买,中奖机会是均等的中奖机会是均等的,这就是所这就是所谓的谓的“抽签公平性抽签公平性”.1111()()(|)()(|)0.1nP BP A P B AP A P B Annnn 贝叶斯贝叶斯(Bayes)公式公式 设设A1,A2,An是样本空间的一个划分是样本空间的一个划分,B是任一事件是任一事件,且且P(B)0,则则1()(|)()(|)(|),1,2,.,.()()(|)iiiiinkkkP A P B AP A P B AP ABinP BP A

32、 P B A 例例1-27 在例1-24的条件下,若第二次取到白球,求第一次取到黑球的概率.解解 使用例1-24解中记号,所求概率为 ,由贝叶斯公式(|)P A B35()(|)387(|).5()78P A P B AP A BP B 注:注:Bayes公式求的是公式求的是条件概率条件概率.例例1-27 在例1-25的假设下,若任取一件是废品,分别求它是甲、乙、丙生产的概率.解解 由贝叶斯公式,111()(|)30%5%30(|)37.97%;()3.95%79P A P B AP ABP B 222()(|)35%4%28(|)35.44%;()3.95%79P A P B AP ABP

33、B 333()(|)35%3%21(|)26.58%.()3.95%79P A P B AP ABP B 例例1-28 针对某种疾病进行一种化验,患该病的人中有90%呈阳性反应,而未患该病的人中5%呈阳性反应.设人群中有1%的人患这种病.若某人做这种化验呈阳性反应,则他换这种疾病的概率是多少?()0.01,()0.99,(|)0.9,(|)0.05.P AP AP B AP B A 解解 设A表示“某人患这种病”,B表示“化验呈阳性反应”,则由全概率公式得再由贝叶斯公式得()()(|)()(|)0.01 0.9 0.99 0.050.0585.P BP A P B AP A P B A )(|

34、)0.010.9(|)0.1515%.()0.0585PA P B AP A BP B 本题的结果表明,化验呈阳性反应的人中,只有15%左右真正患有该病.1、全概率公式及其应用;、全概率公式及其应用;(求无条件概率求无条件概率)小小 结结2、贝叶斯公式及其应用。、贝叶斯公式及其应用。(求条件概率求条件概率)1()(|)()(|)(|),1,2,.,.()()(|)iiiiinkkkP A P B AP A P B AP ABinP BP A P B A 1()()(|).niiiP BP A P B A 定义定义1-4 若P(AB)=P(A)P(B),则称A与B相互独立,简称A,B独立独立.性

35、质性质1-6 若A与B相互独立,则A与B,A与B,A与B都相互独立.1.4 事件的独立性事件的独立性1.4.1 两事件独立两事件独立性质性质1-5 设P(A)0,则A与B相互独立的充分必要条件是P(B)=P(B|A).设P(B)0,则A与B相互独立的充分必要条件是P(A)=P(A|B).以下四件事等价:(1)事件A、B相互独立;(2)事件A、B相互独立;(3)事件A、B相互独立;(4)事件A、B相互独立。由性质由性质1-6知知,例例1-30 两射手彼此独立地向同一目标射击,设甲射中目标的 概率为0.9,乙射中目标的概率为0.8,求目标被击中的概率.解解 设A表示“甲射中目标”,B表示“乙射中目

36、标”,C表示“目标被击中”,则C=AB,A与B相互独立,P(A)=0.9,P(B)=0.8,故P(C)=P(AB)=P(A)+P(B)-P(AB)=0.9+0.8-0.9*0.8=0.98.或利用对偶律对偶律亦可.注注:A,B相互独立时,概率加法公式可以简化,即当A与B相互独立时P(AB)=1-P(A)P(B)例例1-31 袋中有袋中有5个白球个白球3个黑球个黑球,从中有放回地连续取两次从中有放回地连续取两次,每次取每次取 一个球一个球,求两次取出的都是白球的概率求两次取出的都是白球的概率.5525()()()8864P ABP A P B解解 设A表示“第一次取球取到白球”,B表示“第二次取

37、球取到白球”,由于是有放回抽取,A与B是相互独立的,所求概率为例例1-32 设设A与与B相互独立相互独立,A发生发生B不发生的概率与不发生的概率与B发生发生A不发生的不发生的 概率相等概率相等,且且P(A)=1/3,求,求P(B).即即12()(),1()2().33P BP BP BP B 1().3P B 解得解解 由题意,P(AB)=P(AB),因为A与B相互独立,则A与B,A与B都相互独立,故 P(A)P(B)=P(A)P(B),二、多个事件的独立二、多个事件的独立定义定义1-5 若三个事件A、B、C满足:P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)

38、P(C),则称事件A、B、C两两相互独立两两相互独立;若在此基础上还满足:P(ABC)P(A)P(B)P(C),则称事件A、B、C相互独立相互独立,简称A、B、C独立独立.一般地,设A1,A2,An是n个事件,如果对任意k(1kn),任意的1i1i2 ik n,具有等式 P(A i1 A i2 A ik)P(A i1)P(A i2)P(A ik)则称n个事件A1,A2,An相互独立。思考:思考:1.设事件A、B、C、D相互独立,则2.三个事件相互独立和两两独立的关系.AUB与CD独立吗?例例1-33 3人独立地破译一个密码人独立地破译一个密码,他们能单独译出的概他们能单独译出的概率分别为率分别

39、为 1/5,1/3,1/4.求此密码被译出的概率求此密码被译出的概率.解法解法1 设A,B,C分别表示3人能单独译出密码,则所求概率为 P(ABC),且A,B,C独立,P(A)=1/5,P(B)=1/3,P(C)=1/4.于是 _()1()1()1()()()11()1()1()4231.534P ABCP ABCP ABCP A P B P CP AP BP C 解法解法 2 用用解法解法1的记号,的记号,()()()()()()()()()()()()()()()()()()()()1111111111115345354345343.5P ABCP AP BP CP ABP ACP BCP

40、 ABCP AP BP CP A P BP A P CP B P CP A P B P C 比较起来比较起来,解法解法1要简单一些要简单一些,对于对于n个相互独立事件个相互独立事件A1,A2,An,其和事件其和事件A1A2An的概率可以通过下的概率可以通过下式计算:式计算:121212(.)1(.)1()().().nnnP AAAP A AAP A P AP A n重贝努利重贝努利(Bernoulli)试验:试验:试验只要两个结果A和A,而且P(A)=p,0p1.将试验独立重复进行n次,则称为n重贝努利试验.此类试验的概率模型成为贝努利概型贝努利概型.()(1),0,1,2,.,.kkn k

41、nnP kC ppkn 定理定理1-1 在n重贝努利试验中,设每次试验中事件A的概率为p(0p1),事件A恰好发生k次的概率 1.4.2 n重贝努利重贝努利(Bernoulli)试验试验例例1-35 一射手对一目标独立射击一射手对一目标独立射击4次次,每次射击的命中率为每次射击的命中率为0.8,求:求:(1)恰好命中两次的概率;)恰好命中两次的概率;(2)至少命中一次的概率。)至少命中一次的概率。0004,()()1()1(0),BA P BP AP AP 解解 因每次射击是相互独立的,故此问题可看做4重贝努力试验,p=0.8,(1)设事件A2表示“4次射击恰好命中两次次射击恰好命中两次”,则

42、所求的概率为222244()(2)(0.8)(0.2)0.1536.P APC(2)设事件B表示“4次射击中至少命中一次次射击中至少命中一次”,有A0表示“4次射击都未次射击都未命命中中”,则004441(0)1(0.8)(0.2)0.9984.PC 故所求的概率为故所求的概率为小小 结结1、事件的独立性;、事件的独立性;2、n重贝努利重贝努利(Bernoulli)试验试验.第二章随机变量第二章随机变量 随机变量概念随机变量概念 分布函数的概念和性质分布函数的概念和性质 离散型随机变量及其分布律离散型随机变量及其分布律 连续型随机变量概率密度函数连续型随机变量概率密度函数 随机变量函数分布随机

43、变量函数分布2.1.12.1.1随机变量的概念随机变量的概念定义 2.1 设E是随机试验,样本空间为,如果对每一个结果(样本点),有一个实数X()与之对应,这样就得到一个定义在上的实值函数X=X()称为随机变量.随机变量常用X,Y,Z,.或X1,X2,X3,,.顾名思义,随机变量就是“其值随机会而定”的变量,正如随机事件是“其发生与否随机会而定”的事件机会表现为试验结果,一个随机试验有许多可能的结果,到底出现哪一个要看机会,即有一定的概率最简单的例子如掷骰子,掷出的点数X是一个随机变量,它可以取1,6等6个值到底是哪一个,要等掷了骰子以后才知道因此又可以说,随机变量就是试验结果的函数从这一点看

44、,它与通常的函数概念又没有什么不同把握这个概念的关键之点在于试验前后之分:在试验前我们不能预知它将取何值,这要凭机会,“随机”的意思就在这里,一旦试验后,取值就确定了比如你在星期一买了一张奖券,到星期五开奖在开奖之前,你这张奖券中奖的金额X是一个随机变量,其值要到星期五的“抽奖试验”做过以后才能知道 2.1.2 离散型随机变量及其分布律定义定义2-2 若随机变量X只能取有限多个或可列无限多个值,则称X为离散型随机变量。定义2-3 X为离散型随机变量,可能取值为为离散型随机变量,可能取值为x1,x2,xn,且且 PX=xk=pk,(k=1,2,)则称则称Pk为为X的的分布律分布律或分布列,概率分

45、布。或分布列,概率分布。X Xx x1 1 x x2 2x xK KP Pk kp1p2pk分布律也可用表格形式表示分布律也可用表格形式表示分布律Pk具有下列性质:1(1)0,1,2,.;(2)1.kkkPkP 反之,若一个数列Pk具有以上两条性质,则它必可作为某离散型随机变量的分布律。例2-1 设离散型随机变量X的分布律为X 0 1 2P 0.2 C 0.3求常数C.例2-2 投一枚质地均匀的骰子,记X为出现的点数,求X的分布律。0-1分布与二项分布定义2-4 (0-1分布)若随机变量X只取两个可能值0,1,且:PX=1=p,PX=0=q,X 0 1 P q p几种常见的离散型随机变量的分布

46、定义2-5 (二项分布)若随机变量X的可能取值为0,1,2,.,n,而X的分布律为其中0p1,q=1-p,则称X服从参数为n,p的二项分布,简记为XB(n,p).,0,1,2,.,kkn kknpP XkC p qkn 例2-6 已知某地区人群患有某种病的概率是0.2,某单位研制出某种新药,现有15人服用,结果都没得病,从这个结果我们对该种新药的效果会得到什么结论?2.1.4 泊松分布定义2-6 设随机变量X的可能取值为0,1,2,.,n,.,而X的分布律为,0,1,2,.,!kkpP Xkekk 0 ().XP 其中 ,则称X服从参数为 的泊松分布,简记为例2-9 设随机变量X服从参数为5的

47、泊松分布,求(1)PX=10;(2)PX10.例2-10 设X服从泊松分布,且已知PX=1=PX=2,求PX=4.小 结 本节课主要讲授:1、随机变量的概念;2、离散型随机变量的概念及其分布律;3、三个重要分布:0-1分布、二项分布、泊松分布.2.2 随机变量的分布函数随机变量的分布函数2.2.1 分布函数的概念分布函数的概念.定义定义2-7 设X为随机变量,称函数为X的分布函数。(),(,)F xP Xxx 当当X为离散型随机变量时,设为离散型随机变量时,设X的分布律为的分布律为 ,0,1,2,.(),().由于,由概率性知,即kkkkkkxxkkxxxxkxxPP XkkXxXxF xP

48、XxP XxPF xP gggU例例 2-11 设离散型随机变量X的分布律为 X -1 0 1 2 P 0.2 0.1 0.3 0.4求X的分布函数。1()0;xFxPXx 当时,解解10()10.2;xF xP XxP X 当时,01()100.20.10.3;xF xP XxP XP X 当时,12()1010.20.1 0.30.6;2()10120.20.1 0.30.41,xF xP XxP XP XP XxF xP XxP XP XP XP X 当时,当时,()0,1,0.2,10,()0.3,01,0.6,12,1,2.XF xxxF xxxx 则 的分布函数为0 1.求分布的分

49、布函数练 习2.2.2分布函数的性质分布函数的性质(1)0()1;F x(2)()()();1212F xxxF xF x是不减函数,对于任意的有分布函数有以下基本性质:(3)()lim()0,()lim()1;FF xFF xxx (4)()lim()().0F xF xxF xx 是右连续,即120,0,0,0,(1)()sin,0,(2)()sin,0,21,.1,.2xxF xxxF xxxxx 判断下列函数哪些是随机变量的分布函数:练 习例例 2-12.0.0,0,0,)(的值与为常数,求常数其中的分布函数为设随机变量baxxbeaxFXx()lim()lim(),1;1)xFF x

50、abexaaxF 由分布函质,知性数的解00,lim()lim()00()lim()(1(0)0,.)xxxF xabexxabF xF xbF xF 是右连续又由,即可得由此得性()arctan,.XF xabxxab 设随机变量 的分布函数为求常数 与练习,()FXx已知 的我们可以得到下列分布函数重要事件的概率:(1);P XbF b())2();P aXbF bF a()1().3P XbF b()0,0,01,3(),12,21,2.1313(1);(2);(3)2.221223XxxxF xxxxPXP XP X设随机变量 的分布函数为求例1331(1)2222317;4612PX

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(自考-概率论与数理统计课件20课时.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|