勾股定理的应用课件.pptx

上传人(卖家):三亚风情 文档编号:3590362 上传时间:2022-09-22 格式:PPTX 页数:61 大小:2.73MB
下载 相关 举报
勾股定理的应用课件.pptx_第1页
第1页 / 共61页
勾股定理的应用课件.pptx_第2页
第2页 / 共61页
勾股定理的应用课件.pptx_第3页
第3页 / 共61页
勾股定理的应用课件.pptx_第4页
第4页 / 共61页
勾股定理的应用课件.pptx_第5页
第5页 / 共61页
点击查看更多>>
资源描述

1、2022-8-13勾股定理的应用勾股定理的应用知识点一知识点一 圆柱侧面上两点间的最短距离圆柱侧面上两点间的最短距离圆柱侧面的展开图是一个长方形.圆柱侧面上两点之间最短距离的求法是把圆柱侧面展开成平面图形,依据两点之间线段最短,以最短路线为斜边构造直角三角形,利用勾股定理求解.3勾股定理的应用例1如图1-3-1所示,一个圆柱体高20 cm,底面半径为5 cm,在圆柱体下底面的A点处有一只蜘蛛,它想吃到上底面与A点相对的B点处的一只已被粘住的苍蝇,这只蜘蛛从A点出发,沿着圆柱体的侧面爬到B点,最短路程是多少?(取3)图1-3-13勾股定理的应用解析如图1-3-2所示,将圆柱侧面沿AC剪开并展平,

2、连接AB,则AB的长即为蜘蛛爬行的最短路程.根据题意得AC=20 cm,BC=25=15(cm).在ABC中,ACB=90,由勾股定理得AB2=BC2+AC2=152+202=252,所以AB=25 cm,所以最短路程是25 cm.图1-3-2123勾股定理的应用面之间的问题,必须先将它们转化到同一平面内,即把长方体设法展开成一个平面图形,再构造直角三角形,利用勾股定理解决.展开长方体时,一定要注意打开哪一个侧面,并且向上、下与向左、右展开会出现长度不同的路线,应通过尝试从几条路线中选一条符合要求的.知识点二知识点二 长方体长方体(或正方体或正方体)表面上两点间的最短距离表面上两点间的最短距离

3、长方体的每个面都是平面图形,所以计算同一个面上的两点之间的距离比较容易.若计算不同平面上的两点之间的距离,则变成了两个平3勾股定理的应用例2如图1-3-3所示,有一个长方体,长、宽、高分别为6、5、3.在长方体的底面A处有一堆蚂蚁,它们想吃到长方体上底面与A相对的B点处的食物,则需要爬行的最短路程是多少?图1-3-33勾股定理的应用解析将四边形GBEF与四边形ACEF展开放在同一平面上.连接AB,如图1-3-4所示,所走的最短路线显然为线段AB.在RtABC中,由勾股定理得AB2=AC2+BC2=62+82=100.图1-3-4将四边形CDBE与四边形ACEF展开放在同一平面上.连接AB,如图

4、1-3-5(1)所示,所走的最短路线显然为线段AB.在RtABD中,由勾股定理得AB2=AD2+BD2=112+32=130.3勾股定理的应用(1)(2)图1-3-5将四边形AFGH与四边形EBGF展开放在同一平面上.连接AB,如图1-3-5(2)所示,所走的最短路线显然为线段AB.在RtABE中,由勾股定理得AB2=AE2+BE2=92+52=106.因为130106100,所以情况的路线最短,故蚂蚁需要爬行的最短路程是10.3勾股定理的应用知识点三知识点三 勾股定理在实际问题中的应用勾股定理在实际问题中的应用例3如图1-3-6,南北方向线MN以西为我国领海,以东为公海.上午9时50分,我国

5、缉私艇A发现正东方向有一走私艇C以13海里/时的速度偷偷向我领海驶来,便立即通知正在MN线上巡逻的缉私艇B.已知A,C两艇的距离是13海里,A,B两艇的距离是5海里,缉私艇B与C艇的距离是12海里,若C艇的速度不变,那么它最早会在什么时间进入我国领海?图1-3-63勾股定理的应用解析设直线MN与AC交于点E,则BEC=90.因为AB2+BC2=52+122=169,AC2=132=169,所以AB2+BC2=AC2,所以ABC是直角三角形,ABC=90.因为MNCE,所以C艇进入我国领海的最短距离是线段CE的长.在RtBCE和RtABE中,CE2+BE2=144,(13-CE)2+BE2=25

6、,由此得26CE=288,所以CE=海里.因为C艇的速度是13海里/时,所以13=0.85(小时)=51(分).所以9时50分+51分=10时41分.答:走私艇最早会在10时41分进入我国领海.14413144131441693勾股定理的应用点拨首先要根据勾股定理的逆定理判断三角形的形状,然后利用勾股定理求线段的长.为减小思考问题的“跨度”,可将原问题分解成下述“子问题”:(1)ABC是什么形状的三角形;(2)走私艇C进入我国领海的最短距离是多少;(3)走私艇C最早会在什么时间进入我国领海.这样问题就可迎刃而解.3勾股定理的应用题型一题型一 判断垂直的方法判断垂直的方法例1图1-3-7是一农民

7、建房时挖地基的平面图,按标准应为长方形,他在挖完后测量发现AB=CD=6 m,AD=BC=8 m,AC=9 m,请你帮他看一下挖的地基是否合格.图1-3-73勾股定理的应用解析AD2+DC2=82+62=100,AC2=92=81,AD2+DC2AC2,ADC不是直角三角形,ADC90.标准地基为长方形,四个角应为直角,该农民挖的地基不合格.点拨在实际生活中,常用勾股定理的逆定理判断两直线是否垂直,解决问题的一般方法:实际问题数学问题利用勾股定理的逆定理判断是否垂直.3勾股定理的应用题型二题型二 利用勾股定理解决折叠问题利用勾股定理解决折叠问题例2如图1-3-8,长方形纸片ABCD沿对角线AC

8、折叠,设点D落在D处,BC交AD于点E,AB=6 cm,BC=8 cm,求阴影部分的面积.图1-3-83勾股定理的应用解析在ABE和CDE中,B=D=90,AEB=CED,AB=CD,ABE CDE,AE=EC.设AE=x cm(x0),则BE=(8-x)cm.在RtABE中,AB2+BE2=AE2,即62+(8-x)2=x2,x=,EC=AE=cm.S阴影=ECAB=6=(cm2).25425412122547543勾股定理的应用点拨关于折叠问题的解题步骤:(1)利用重叠的图形传递数据(一般不用重叠的图形进行计算).(2)选择或构造直角三角形,这个直角三角形一般一边已知,另两边可通过重叠图形

9、找到数量关系.(3)利用勾股定理列方程求解.3勾股定理的应用题型三题型三 用勾股定理解决距离最短问题用勾股定理解决距离最短问题例3高速公路的同一侧有A、B两个城镇,如图1-3-9,它们到高速公路所在直线MN的距离分别为AA=2 km,BB=4 km,AB=8 km.要在高速公路上A、B之间建一个出口P,使A、B两城镇到P的距离之和最小.求这个最小距离.图1-3-93勾股定理的应用解析如图1-3-10,作点B关于MN的对称点C,连接AC交MN于点P,则点P即为所建的出口.图1-3-10此时A、B两城镇到出口P的距离之和最小,最小距离为AC的长.作ADBB于点D,在RtADC中,AD=AB=8 k

10、m,DC=6 km,AC2=AD2+DC2=100,AC=10 km,这个最小距离为10 km.3勾股定理的应用易错点易错点 使用勾股定理考虑不全面使用勾股定理考虑不全面例在ABC中,AB=15,AC=20,BC边上的高AD=12,则BC的长为()A.25 B.7C.25或7 D.不能确定3勾股定理的应用解析分两种情况:如图1-3-11.图1-3-11在RtABD中,BD2=152-122=92,解得BD=9.在RtACD中,CD2=202-122=162,解得CD=16.BC=BD+CD=9+16=25.3勾股定理的应用如图1-3-12.图1-3-12在RtABD中,BD2=152-122=

11、92,解得BD=9.在RtACD中,CD2=202-122=162,解得CD=16.BC=CD-BD=16-9=7.答案 C易错警示分两种情况讨论,易丢掉ABC为钝角三角形的情况.3勾股定理的应用培养勾股定理中的几何直观能力典例剖析例如图1-3-13所示,长方体的底面相邻两边的长分别为1 cm和3 cm,高为6 cm,如果用一根细线从A开始经过4个侧面缠绕一圈到达B,那么所用细线最短需要多长?如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短时其长度的平方是多少?图1-3-133勾股定理的应用解析将长方体展开,连接AB,如图1-3-14所示.因为AA=1+3+1+3=8(cm),AB

12、=6 cm,所以AB2=AA2+AB2=82+62=102,所以用一根细线从点A开始经过4个侧面缠绕一圈到达B,所用细线最短需要10 cm.如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短时,其长度的平方为(8n)2+62=64n2+36.图1-3-143勾股定理的应用素养呈现确定几何体上的最短路线时,往往无法直接求解,需要先转化为平面图形.将几何体展开,就能直观地看出最短距离.本题先将几何体展开,再利用“两点之间,线段最短”确定所求线段,最后使用勾股定理求出线段的长.素养解读直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题的素养,

13、利用平面图形有助于发现、描述问题,有助于理解、记忆得到的结果,可以把困难的数学问题变容易,把抽象的数学问题变简单.3勾股定理的应用知识点一知识点一 圆柱侧面上两点间的最短距离圆柱侧面上两点间的最短距离1.如图1-3-1,有一圆柱,它的高等于8 cm,底面直径等于4 cm(=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与C相对的B点处的食物,则需要爬行的最短路程为()图1-3-1A.10 cmB.12 cmC.19 cmD.20 cm3勾股定理的应用答案 A如图所示,将圆柱的侧面展开,连接AB,底面半径为2 cm,BC=2=6(cm),在RtABC中,AC=8 cm,BC=6 cm,AB2

14、=AC2+BC2=100,AB=10 cm.423勾股定理的应用2.图1-3-2是一个三级台阶,它的每一级台阶的长、宽和高分别是50 cm,30 cm,10 cm,A和B是这个台阶的两个相对的顶点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬()图1-3-2A.13 cmB.40 cmC.130 cmD.169 cm知识点二知识点二 长方体长方体(或正方体或正方体)表面上两点间的最短距离表面上两点间的最短距离3勾股定理的应用答案 C将台阶面展开,连接AB,如图,线段AB即为壁虎所爬的最短路线.因为BC=303+103=120(cm),

15、AC=50 cm,在RtABC中,根据勾股定理,得AB2=AC2+BC2=16 900,所以AB=130 cm.所以壁虎至少需爬130 cm.3勾股定理的应用知识点三知识点三 勾股定理在实际问题中的应用勾股定理在实际问题中的应用3.一艘轮船以30 km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以16 km/h的速度向东南方向航行,它们离开港口半小时后相距 km.答案17解析作出图形,如图,因为东北和东南方向的夹角为90,所以ABC为直角三角形.在RtABC中,AC=300.5=15(km),BC=160.5=8(km),所以AB2=AC2+BC2=152+82=289,所以AB=

16、17 km.3勾股定理的应用4.中华人民共和国道路交通安全法规定:小汽车在城市道路上行驶速度不得超过70 km/h.如图1-3-3,一辆小汽车在一条城市道路上直线行驶,某一时刻刚好行驶到路对面车速检测仪(点A)的正前方30 m处(点C),过了2 s后,测得小汽车与车速检测仪间的距离AB为50 m.问这辆小汽车超速了吗?图1-3-33勾股定理的应用解析这辆小汽车超速了.在RtABC中,AB=50 m,AC=30 m,由勾股定理得BC=40 m,402=20 m/s=72 km/h,小汽车在城市道路上行驶速度不得超过70 km/h,这辆小汽车超速了.3勾股定理的应用1.(2013山东济南中考)如图

17、,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m.则旗杆的高度(滑轮上方的部分忽略不计)为()A.12 m B.13 m C.16 m D.17 m3勾股定理的应用答案 D如图所示,作BCAE于点C,则BC=DE=8 m,设AE=x m,则AB=x m,AC=(x-2)m,在RtABC中,AC2+BC2=AB2,即(x-2)2+82=x2,解得x=17.所以旗杆的高度为17 m.3勾股定理的应用2.如图所示,将长方形纸片ABCD(四个角都是直角)折叠,使点D落在BC边上的点F处,已知AB=DC=8 cm,AD=BC=10

18、 cm,求EC的长.3勾股定理的应用解析设EC的长为x cm,则DE=(8-x)cm.ADE折叠后的图形是AFE,AD=AF,DE=EF=(8-x)cm.AD=10 cm,AF=10 cm.又AB=8 cm,AB2+BF2=AF2,82+BF2=102,BF=6 cm.BC=10 cm,FC=BC-BF=10-6=4(cm).在RtEFC中,根据勾股定理,得FC2+EC2=EF2,42+x2=(8-x)2,即16+x2=64-16x+x2,化简,得16x=48,解得x=3.故EC的长为3 cm.3勾股定理的应用1.如图1-3-4,圆柱的底面直径为,BC=12,动点P从A点出发,沿着圆柱的侧面移

19、动到BC的中点S的最短距离为()图1-3-4A.10 B.12 C.20 D.14163勾股定理的应用答案 A将圆柱侧面沿DA展开,如图所示,AB=8,BS=BC=6,在RtABS中,由勾股定理得AS=10,即点P从点A移动到点S的最短距离为10.1216123勾股定理的应用2.小明想知道学校旗杆的高度,他把绳子一端挂在旗杆顶端,发现绳子垂到地面时还余1 m;当他把绳子下端拉开5 m后,绳子下端刚好接触地面,如图1-3-5,你能帮他求出旗杆的高度吗?图1-3-53勾股定理的应用解析能.由于旗杆垂直于地面,所以C=90.在RtABC中,由勾股定理,得AC2+BC2=AB2,而AB=AC+1,所以

20、可设AC=x m,则有x2+52=(x+1)2,解得x=12.所以旗杆的高度为12 m.3勾股定理的应用1.如图所示,有一张直角三角形纸片ABC,已知AC=5 cm,BC=10 cm,将纸片折叠,使点B与点A重合,折痕为DE,则CD的长为()A.cm B.cm C.cm D.cm252152254154答案 D由题意知DE所在直线为线段AB的垂直平分线,所以AD=BD.设CD=x cm,则AD=BD=(10-x)cm.在RtACD中,由勾股定理,得x2+52=(10-x)2,所以x=.故选D.1543勾股定理的应用2.如图,要在河边(直线l)修建一个水泵站,分别向张村(点A)和李庄(点B)送水

21、.已知张村、李庄到河边的距离分别为2千米和7千米,且CD=12千米.(1)水泵站应修建在什么地方,可使所用的水管最短?请你在图中设计出水泵站的位置;(2)如果铺设水管的工程费用为每千米1 500元,请求出铺设水管的最少费用.3勾股定理的应用解析(1)如图,作点A关于直线l的对称点A,连接AB交l于点P,则点P即为水泵站的位置,此时,PA+PB最小,即所铺设的水管最短.(2)如图,过点A作l的平行线与BD的延长线相交于点B,则B=90.由题意知AC=AC=BD=2千米,AB=CD=12千米,BD=7千米.在RtABB中,BB=7+2=9(千米),根据勾股定理,得BA2=AB2+BB2=122+9

22、2=225,故BA=15千米.因为PA=PA,所以(PA+PB)min=BA=15千米.此时,铺设水管的费用为1 50015=22 500(元).所以铺设水管的最少费用为22 500元.3勾股定理的应用选择题1.(2017山西吕梁孝义期中,6,)图1-3-6为某楼梯,测得楼梯的长为5米,高为3米,计划在楼梯表面铺地毯,地毯的长度至少需要()图1-3-6A.4米 B.8米 C.9米 D.7米3勾股定理的应用答案 D由勾股定理得楼梯的水平长度为4米,地毯的长度至少是3+4=7米.故选D.3勾股定理的应用2.(2016 江苏常州常青藤期中,9,)如图1-3-7,长、宽、高分别为4 cm、3 cm、1

23、2 cm的长方体盒子中,能容下的最长木棒的长为()图1-3-7A.11 cm B.12 cm C.13 cm D.14 cm3勾股定理的应用答案 C如图,连接AB、BC.由题易知能容下的最长木棒长即为AB的长,由勾股定理,可得BC2=32+42=52,AB2=122+52=132,AB=13 cm.3勾股定理的应用(2016江苏盐城一中期末,21,)如图,在B港有甲、乙两艘渔船同时航行,若甲船沿北偏东60方向以8海里/小时的速度前进,乙船沿南偏东某方向以15海里/小时的速度前进,2小时后甲船到达M岛,乙船到达P岛,两岛相距34海里,你知道乙船沿哪个方向航行吗?3勾股定理的应用解析由题意知BM=

24、82=16(海里),BP=152=30(海里),在BMP中,BM2+BP2=256+900=1 156,PM2=342=1 156,BMP是直角三角形,MBP=90,ABP=180-90-60=30.故乙船沿南偏东30方向航行.3勾股定理的应用一、选择题1.(2017浙江绍兴中考,6,)如图1-3-8,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,当保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米.则小巷的宽度为()图1-3-8A.0.7米 B.1.5米 C.2.2米 D.2.4米3勾股定理的应用答案 C设梯子斜靠在右墙时,梯子

25、底端到右墙角的距离为x(x0)米.由题意,得(0.7)2+(2.4)2=x2+22,则x2=2.25,x=1.5,则小巷的宽度为0.7+1.5=2.2(米).故选C.3勾股定理的应用2.(2017贵州安顺中考,7,)如图1-3-9,长方形纸片ABCD中,AD=4 cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O.若AO=5 cm,则AB的长为()图1-3-9A.6 cm B.7 cm C.8 cm D.9 cm3勾股定理的应用答案 C四边形ABCD为长方形,AD=4 cm,BC=AD=4 cm,B=D=90,由题意可得ACE ACB,CE=BC=4 cm,E=B=90,在AOD和CO

26、E中,E=D,AOD=COE,AD=CE,AODCOE,AO=CO=5 cm,在RtCOE中,根据勾股定理可得:OE2=OC2-CE2=52-42=9,OE=3 cm,AE=AO+OE=5+3=8 cm,AB=8 cm,故选C.3勾股定理的应用二、填空题3.(2014山东潍坊中考,18,)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图1-3-10所示,把枯木看作一个圆柱体,因一丈是十尺,所以该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是 尺.图1

27、-3-103勾股定理的应用解析因为葛藤绕枯木五周而到达顶端,所以将枯木滚动5周,如图.由题意得AA=15尺,AB=20尺,AB的长就是葛藤的最短长度,AB2=AA2+AB2=152+202=625,AB=25尺.答案253勾股定理的应用1.(2017四川宜宾中考,7,)如图,在长方形ABCD中,BC=8,CD=6,将ABE沿BE折叠,使点A恰好落在对角线BD上F处,则DE的长是()A.3 B.C.5 D.24589163勾股定理的应用答案 C四边形ABCD是长方形,AB=CD=6,AD=BC=8.由勾股定理得BD2=BC2+CD2=100,BD=10.由折叠可知,BF=AB=6,AE=EF,D

28、F=4.在RtDEF中,EF2+DF2=DE2,(8-DE)2+42=DE2,解得DE=5.故选C.3勾股定理的应用2.(2017山东淄博中考,12,)如图,在RtABC中,ABC=90,AB=6,BC=8,BAC,ACB的平分线相交于点E,过点E作EFBC交AC于点F,则EF的长为()A.B.C.D.52831031543勾股定理的应用答案 C如图,过点E分别作EDAB,EMBC,ENAC,垂足分别为D,M,N,BAC,ACB的平分线相交于点E,ED=EM=EN.在RtABC中,由勾股定理得AC=10.设ED=EM=EN=x,易知AN=AD=6-x,CN=CM=8-x.又6-x+8-x=10

29、,x=2.EFBC,FEC=ECB,FCE=ECB,FEC=FCE.EF=CF.在RtEFN中,NF=CN-CF=8-2-CF=6-EF.EF2-(6-EF)2=22,解得x=.1033勾股定理的应用铁路上A、B两站(视为直线上两点)相距25 km,C、D为两村庄(视为两个点),DAAB于点A,CBAB于点B,如图1-3-11所示,已知DA=15 km,CB=10 km,现要在铁路AB上建设一个土特产收购站E,使得C、D两村到E站的距离相等,则E站应建在距离A站 km处.图1-3-113勾股定理的应用解析C、D两村庄到E站距离相等,CE=DE.在RtDAE和RtCBE中,DE2=AD2+AE2,CE2=BE2+BC2,AD2+AE2=BE2+BC2.设AE为x km,则BE=(25-x)km,152+x2=(25-x)2+102,整理得50 x=500,解得x=10,E站应建在距离A站10 km处.答案103勾股定理的应用如图,圆柱底面半径为2 cm,高为9 cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A沿着圆柱侧面绕3圈到B,则棉线最短为 cm.3勾股定理的应用

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(勾股定理的应用课件.pptx)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|