1、现代电机控制技术现代电机控制技术第三章第三章 三相永磁同步电动机的矢量控制三相永磁同步电动机的矢量控制第第3章章 三相永磁同步电动机的三相永磁同步电动机的矢量控制矢量控制n3.1 基于转子磁场定向的矢量方程基于转子磁场定向的矢量方程n3.2 基于转子磁场定向的矢量控制及控制系基于转子磁场定向的矢量控制及控制系统统n3.3 弱磁控制与定子电流最优控制弱磁控制与定子电流最优控制n3.4 基于定子磁场定向的矢量控制基于定子磁场定向的矢量控制n3.5 谐波转矩及转速波动谐波转矩及转速波动n3.6 矢量控制系统仿真实例矢量控制系统仿真实例3.1基于转子磁场定向的矢量方程基于转子磁场定向的矢量方程n1 转
2、子结构及物理模型转子结构及物理模型n永磁同步电动机是由电励磁发展来的。用永磁同步电动机是由电励磁发展来的。用永磁体代替电励磁系统,省去了励磁绕组、永磁体代替电励磁系统,省去了励磁绕组、集电环和电刷,其定子与电励磁的三相同集电环和电刷,其定子与电励磁的三相同步电动机相同,故称为步电动机相同,故称为永磁同步电动机永磁同步电动机(Permanent Magnet Synchronous Motor,PMSM)。n永磁同步电动机要求其在稳态运行时能够永磁同步电动机要求其在稳态运行时能够在相绕组中产生在相绕组中产生正弦波感应电动势正弦波感应电动势,所以,所以其永磁励磁磁场在气隙中按正弦波分布。其永磁励磁
3、磁场在气隙中按正弦波分布。n永磁同步电动机的转子结构,按永磁体安永磁同步电动机的转子结构,按永磁体安装形式分为,装形式分为,面装式、嵌入式和内装式面装式、嵌入式和内装式三三种。如图种。如图3-1图图3-3(p104)。永磁材料一般。永磁材料一般是钕铁硼,也有用稀土钴的。是钕铁硼,也有用稀土钴的。n对于每种类别的转子结构,永磁体的形状对于每种类别的转子结构,永磁体的形状和转子的结构形式,根据永磁材料的类别和转子的结构形式,根据永磁材料的类别和设计要求的不同,可以有多种的选择,和设计要求的不同,可以有多种的选择,可采取各式各样的设计方案。可采取各式各样的设计方案。n除了考虑成本、可靠性和制造工艺之
4、外,除了考虑成本、可靠性和制造工艺之外,应该尽量产生正弦分布的励磁磁场。应该尽量产生正弦分布的励磁磁场。n如图如图3-4(p105)为两为两极面装式极面装式PMSM结结构图。构图。n电压电流正方向一电压电流正方向一致致(按照电动机原则按照电动机原则)将正向电流流经的将正向电流流经的一相绕组产生的正一相绕组产生的正弦波磁动势的轴线弦波磁动势的轴线定义为定义为相绕组的轴相绕组的轴线线,并将,并将A相轴线作相轴线作为为ABC轴系的空间轴系的空间参考坐标。参考坐标。n如图如图3-5(p105)为两为两极插入式极插入式PMSM结构结构图。图。n电压电流正方向一致电压电流正方向一致(按照电动机原则按照电动
5、机原则)将将正向电流流经的一相正向电流流经的一相绕组产生的正弦波磁绕组产生的正弦波磁动势的轴线定义为动势的轴线定义为相相绕组的轴线绕组的轴线,并将,并将A相轴线作为相轴线作为ABC轴系轴系的空间参考坐标。的空间参考坐标。n在建立数学模型之前。假设:在建立数学模型之前。假设:n1)忽略定、转子铁心磁阻,不计涡流和磁忽略定、转子铁心磁阻,不计涡流和磁滞损耗;滞损耗;n2)永磁材料的电导率为零,永磁体内部的永磁材料的电导率为零,永磁体内部的磁导率与空气相同;磁导率与空气相同;n3)转子上没有阻尼绕组;转子上没有阻尼绕组;n4)永磁体产生的励磁磁场和三相绕组产生永磁体产生的励磁磁场和三相绕组产生的电枢
6、反应磁场在气隙中均为正弦分布;的电枢反应磁场在气隙中均为正弦分布;n5)稳态运行时,相绕组中感应电动势波形稳态运行时,相绕组中感应电动势波形为正弦波。为正弦波。两极面装式两极面装式PMSM的物理模型如图的物理模型如图3-6a(p105)n对于面装式转子结构,由于永磁体内部磁对于面装式转子结构,由于永磁体内部磁导率很小,接近于空气,可以将置于转子导率很小,接近于空气,可以将置于转子表面的永磁体等效为两个空心励磁线圈,表面的永磁体等效为两个空心励磁线圈,如图如图3-6a。n其在气隙中产生正弦分布的励磁磁场与两其在气隙中产生正弦分布的励磁磁场与两个永磁体相同。再将这两个励磁线圈等效个永磁体相同。再将
7、这两个励磁线圈等效置于转子槽内的励磁绕组,其有效匝数为置于转子槽内的励磁绕组,其有效匝数为相绕组的相绕组的 倍。倍。23n通入等效励磁电流通入等效励磁电流if后,在气隙中产生的正后,在气隙中产生的正弦分布的励磁磁场与两个永磁体相同。弦分布的励磁磁场与两个永磁体相同。fmffiLnLmf为等效励磁电感,为等效励磁电感,如图如图3-6b。n将永磁体磁场轴线定义为将永磁体磁场轴线定义为d轴,轴,q轴顺着旋轴顺着旋转方向超前转方向超前d轴轴90。nfs和和is分别是定子三相绕组产生的磁动势矢分别是定子三相绕组产生的磁动势矢量和定子电流矢量,产生量和定子电流矢量,产生is(fs)的等效单轴的等效单轴线圈
8、位于线圈位于is(fs)轴上,其有效匝数为相绕组轴上,其有效匝数为相绕组的的 倍。倍。23n对于插入式和面装式的同理,区别是交直轴对于插入式和面装式的同理,区别是交直轴等效励磁电感不相等。等效励磁电感不相等。mqmdLLn这与电励磁的情况相反。这与电励磁的情况相反。n对于面装式的有对于面装式的有 n对于内装式的有对于内装式的有 mmqmdLLLfmLLnLm称为等效励磁电感称为等效励磁电感 mqmdLL2 面装式三相永磁同步电动机的矢量面装式三相永磁同步电动机的矢量方程方程n定子磁链和电压矢量方程定子磁链和电压矢量方程n三相绕组的电压方程三相绕组的电压方程dtdiRuAAsAdtdiRuBBs
9、BdtdiRuCCsCn式中,式中,A、B、C分别为分别为A、B、C相绕相绕组的全磁链。组的全磁链。n 因为电动机气隙均匀,所以因为电动机气隙均匀,所以A、B、C三相三相绕组的自感和互感都与转子位置无关,均绕组的自感和互感都与转子位置无关,均为常值。于是有为常值。于是有 fCfBfACBACCBCABCBBAACABACBAiiiLLLLLLLLL n式中,式中,fA、fB、fC分别为永磁励磁磁场分别为永磁励磁磁场链过链过A、B、C绕组产生的磁链。绕组产生的磁链。1msCBALLLLL n式中,式中,Ls、Lm1分别为相绕组的漏电感和励分别为相绕组的漏电感和励磁电感。磁电感。n另有另有1121
10、120cosmomCBBCCAACBAABLLLLLLLLfCfBfACBAmsmmmmsmmmmsCBAiiiLLLLLLLLLLLL 111111111212121212121n则前页公式可表示为则前页公式可表示为n式中式中fACBmAmsAiiLiLL 1121n一般,定子绕组为一般,定子绕组为Y形连接,且无中线引出,形连接,且无中线引出,则有,则有,于是于是fAAsfAAmsfAAmsAiLiLLiLL 1230CBAiiin式中,式中,Lm为等效同步电感,为等效同步电感,nLs称为同步电感,称为同步电感,Ls=Ls+Lm。123mmLL n对于对于B、C,同样也可以有,同样也可以有A
11、的形式。的形式。n所以所以fCfBfACBAmsCBAiiiLL n同三相感应电动机一样,由三相定子绕组中的同三相感应电动机一样,由三相定子绕组中的电流电流iA、iB、iC构成了定子电流矢量构成了定子电流矢量is,n同理三相绕组的全磁链可构成定子磁链矢量同理三相绕组的全磁链可构成定子磁链矢量s,n由由fA、fB、fC可构成转子磁链矢量可构成转子磁链矢量f。n即有即有 CBAsiaaiii223 CBAsaa 223 fCfBfAfaa 223fsmsssiLiLn表示为空间矢量形式表示为空间矢量形式n式中:式中:n等式右边第一项等式右边第一项Is是产生的是产生的漏磁链矢量漏磁链矢量,与,与定子
12、绕组漏磁场相对应;定子绕组漏磁场相对应;n第二项是第二项是Is产生的产生的励磁磁链矢量励磁磁链矢量,与电枢反,与电枢反应磁场相对应;应磁场相对应;n第三项是转子等效励磁绕组产生的励磁磁第三项是转子等效励磁绕组产生的励磁磁链矢量,与链矢量,与永磁体产生的励磁磁场相对应永磁体产生的励磁磁场相对应。n等式左边是定子磁链矢量。等式左边是定子磁链矢量。n通常,将定子电流产生的漏磁场和电枢反通常,将定子电流产生的漏磁场和电枢反应磁场之和称为应磁场之和称为电枢磁场电枢磁场;将转子励磁磁;将转子励磁磁场称为场称为转子磁场转子磁场,又称为,又称为主极磁场主极磁场;将电;将电枢磁场与主极磁场之和称为定子磁场。枢磁
13、场与主极磁场之和称为定子磁场。n定子磁场的空间矢量形式,还可表示为:定子磁场的空间矢量形式,还可表示为:fsssiLn为定子磁链矢量方程,为定子磁链矢量方程,LsIs为电枢磁链矢量,为电枢磁链矢量,与电枢磁场相对应。与电枢磁场相对应。n将三相绕组的电压方程转换为矢量方程。将三相绕组的电压方程转换为矢量方程。dtdssssiRun则则 dtddtdLsfssssiiRun式中,式中,r为为f在在ABC轴系内的轴系内的空间相位,如图空间相位,如图3-6b(p105)。n另有另有rjfeffrjfjfjedtdedtdrrn等式右边第一项是等式右边第一项是变压器电动势变压器电动势项,因项,因f为恒值
14、,故为零;为恒值,故为零;n第二项是第二项是运动电动势运动电动势项,是因转子磁场旋项,是因转子磁场旋转产生的感应电动势,通常又称为反电动转产生的感应电动势,通常又称为反电动势。势。n定子电压的矢量方程式定子电压的矢量方程式fssssiiRursjdtdLn其等效电路如图其等效电路如图3-8(p109),图中,图中,为感应电动势矢量。为感应电动势矢量。f0erjn在正弦稳态下,因在正弦稳态下,因is幅值恒定,则有幅值恒定,则有ssiisssLjdtdLn在正弦稳态下,定子电压的矢量方程式在正弦稳态下,定子电压的矢量方程式fssssiiRurssjLj n可得面装式可得面装式PMSM矢量图和向量图
15、矢量图和向量图n在正弦稳态下,可将定子电压的矢量方程在正弦稳态下,可将定子电压的矢量方程式直接转换为式直接转换为fssssRusssjILjIfsssRILjILjImfsss0EILjIsssssR式中,式中,E0=rf=rLmfIf,因,因Lmf=Lm,故有,故有E0=sLmIf。n可得图可得图3-10所示的等效电路图。所示的等效电路图。n电磁转矩表达式电磁转矩表达式n根据电励磁三相隐极同步电动机的电磁转根据电励磁三相隐极同步电动机的电磁转矩,面装式矩,面装式PMSM的电磁转矩的电磁转矩 sfsfeipipt 00sin n当当f和和is幅值恒幅值恒定时,电磁转矩定时,电磁转矩仅与两者的夹
16、角仅与两者的夹角有关。有关。Te的的关系称为矩关系称为矩角特性,如图角特性,如图3-11(p110)。n将电磁转矩公式表示为将电磁转矩公式表示为sfimmeLLpt10n表明,电磁转矩可看成是由电枢反应磁场表明,电磁转矩可看成是由电枢反应磁场与永磁磁场相互作用的结果,与永磁磁场相互作用的结果,n其大小由两个磁场的幅值和相对位置决定。其大小由两个磁场的幅值和相对位置决定。n由于由于f的幅值恒定,因此,电磁转矩由电的幅值恒定,因此,电磁转矩由电枢反应磁场枢反应磁场Lmis的幅值和相对的幅值和相对f的相位的相位决决定。定。n将将fs(is)对主极磁场的影响和作用称为对主极磁场的影响和作用称为电枢电枢
17、反应反应,n正是由于电枢反应使气隙磁场发生畸变,正是由于电枢反应使气隙磁场发生畸变,促使了机电能量转换,才产生了电磁转矩。促使了机电能量转换,才产生了电磁转矩。n从电磁转矩公式得知,电枢反应的结果将从电磁转矩公式得知,电枢反应的结果将决定于电枢反应磁场的强弱和其与主极磁决定于电枢反应磁场的强弱和其与主极磁场的相对位置。场的相对位置。nfs(is)除产生电枢反应磁场外,还产生电枢除产生电枢反应磁场外,还产生电枢漏磁场,但此漏磁场不参与机电能量转换。漏磁场,但此漏磁场不参与机电能量转换。不会影响电磁转矩的生成。不会影响电磁转矩的生成。n正弦稳态下的电动机电磁功率正弦稳态下的电动机电磁功率 cos3
18、90cos300sseIEIEPn式中,式中,为内功率因数角。为内功率因数角。n或者或者sin3msfseIILP n电磁转矩为电磁转矩为cos300sseIEpT sin3m0sfeIILpT n或者或者n可得可得sfi 00m0sinsin33pipIILpTsfsfen与前面的电磁转矩公式一致。说明在转矩与前面的电磁转矩公式一致。说明在转矩的矢量控制中,控制的是定子电流矢量的矢量控制中,控制的是定子电流矢量is的的幅值和相对幅值和相对f的空间相位角的空间相位角。n而在正弦稳态下,就相当于控制定子电流而在正弦稳态下,就相当于控制定子电流向量向量Is的幅值和相对的幅值和相对f的时间相位角的时
19、间相位角。n或者相当于控制或者相当于控制Is的幅值和相对的幅值和相对E0的时间相的时间相位角位角。3 插入式三相永磁同步电动机的矢量插入式三相永磁同步电动机的矢量方程方程n 对于插入式转子结构,电动机气隙是不均对于插入式转子结构,电动机气隙是不均匀的。匀的。n在幅值相同的在幅值相同的is作用下,因空间相位角作用下,因空间相位角不不同,产生的电枢反应磁场不会相同,等效同,产生的电枢反应磁场不会相同,等效励磁电感不再是常值,而随着励磁电感不再是常值,而随着角的变化而角的变化而变化。变化。n这给定量计算电枢反应磁场和分析电枢反这给定量计算电枢反应磁场和分析电枢反应作用带来很大的困难。应作用带来很大的
20、困难。n所以,在电机学中,常用双反应所以,在电机学中,常用双反应(双轴双轴)理论理论来分析凸极同步电动机问题。来分析凸极同步电动机问题。n对于插入式永磁同步电动机,同样可以采对于插入式永磁同步电动机,同样可以采用这种分析方法,可采用图用这种分析方法,可采用图3-7b(p106)的的dq轴系来构建数学模型。轴系来构建数学模型。n定子磁链和电压方程定子磁链和电压方程n将单线圈将单线圈s分解为分解为dq轴系上的双线圈轴系上的双线圈d和和q,每个轴线圈的有效匝数与单线圈相同。这每个轴线圈的有效匝数与单线圈相同。这相当于将定子电流矢量相当于将定子电流矢量is分解为分解为 qdjii sin用双反应理论,
21、分别求得用双反应理论,分别求得id(fd)和和iq(fq)(磁动磁动势矢量势矢量)产生的电枢反应磁场,即有产生的电枢反应磁场,即有dmdmdiLqmqmqiLn式中,式中,Lmd和和Lmq分别为直轴和交轴等效励分别为直轴和交轴等效励磁电感,磁电感,Lmd900,fs就会产生直轴去磁分量就会产生直轴去磁分量fd。这时,这时,id的实际方向与正方向相反,即的实际方向与正方向相反,即id90o时,上时,上式中的式中的id应为负应为负值,此时直轴电值,此时直轴电枢磁场会使定子枢磁场会使定子电压降低,而交电压降低,而交轴电枢磁场会使轴电枢磁场会使定子电压升高,定子电压升高,两者的不同作用两者的不同作用也
22、反映在稳态矢也反映在稳态矢量图量图3-14(p113)中。中。n2 电压极限圆和电流极限圆电压极限圆和电流极限圆n将将222qqrfrddriLiLsun转换为标幺值形式,即有转换为标幺值形式,即有 2220rqqddixixesun式中,式中,id、iq和和r的基值为额定值的基值为额定值isn和和rn;snfrnue0snsndrnduiLxsnsnqrnquiLxn为凸极系数,为凸极系数,=xq/xd,n对于面装式对于面装式PMSM,=1。n对于插入式和内装式对于插入式和内装式PMSM,1.0。n定子电压定子电压|us|要受到逆变器电压极限的制约,要受到逆变器电压极限的制约,有有 2max
23、220rqqddixixesun同样,受到逆变器输出电流能力的限制,同样,受到逆变器输出电流能力的限制,定子电流也有一个极限值定子电流也有一个极限值n也即是也即是maxssii 2max22sqdiiin以上几式构成了电压极限椭圆和电流极限以上几式构成了电压极限椭圆和电流极限圆。如图圆。如图3-27(p123)。图中电流极限圆的。图中电流极限圆的半径为半径为1,也就是设定,也就是设定ismax为额定值。为额定值。n上式可以看出,电压极限椭圆的两轴长度与上式可以看出,电压极限椭圆的两轴长度与速度成反比,随着速度的增加,椭圆逐渐变速度成反比,随着速度的增加,椭圆逐渐变小。小。n由于定子电流矢量由于
24、定子电流矢量is既要满足电流极限方程,既要满足电流极限方程,又要满足电压极限方程,所以定子电流矢量又要满足电压极限方程,所以定子电流矢量is一定要在电流极限圆和电压极限圆内。一定要在电流极限圆和电压极限圆内。n例如:当例如:当r=r1时,时,is要被限制在要被限制在ABCDEF范围内。范围内。2max220rqqddixixesun3 弱磁控制方式弱磁控制方式n弱磁控制与定子电流最优控制如图弱磁控制与定子电流最优控制如图3-28 n图图3-28中给出了电压极限椭圆和电流极限中给出了电压极限椭圆和电流极限圆,还给出了最大转矩圆,还给出了最大转矩/电流比轨迹。电流比轨迹。n对于面装式对于面装式PM
25、SM,该轨迹为,该轨迹为q轴,轴,n对于插入式和内装式对于插入式和内装式PMSM,该轨迹与图,该轨迹与图3-24(p121)中的定子电流矢量轨迹相对应,中的定子电流矢量轨迹相对应,两轨迹与电流极限圆各自相交于两轨迹与电流极限圆各自相交于A1点。点。n落在电流极限圆内的轨迹为落在电流极限圆内的轨迹为OA1线段,这线段,这表明电机可以在此段轨迹的每一点上作恒表明电机可以在此段轨迹的每一点上作恒转矩运行。转矩运行。n通过该点的电压极限椭圆对应的速度,就通过该点的电压极限椭圆对应的速度,就是电动机可以达到的最大速度。是电动机可以达到的最大速度。n恒转矩值越高,电压极限椭圆的两轴半径恒转矩值越高,电压极
26、限椭圆的两轴半径越大,可达到的最高转速越低。越大,可达到的最高转速越低。n其中,其中,A1点与最大输出转矩相对应,如图点与最大输出转矩相对应,如图3-29(p124)。n通过通过A1点的电压极限椭圆对应的速度为点的电压极限椭圆对应的速度为r1,r1就是转折速度。如果用标幺值表示,则就是转折速度。如果用标幺值表示,则有有n对于对于A1点运行,由点运行,由dq轴系中的电压分量方轴系中的电压分量方程可得电压极限方程程可得电压极限方程220maxqqddrtixixesufddrqiLu1maxqqrdiLu1maxn式中,式中,uq|max和和ud|max分别为定子电压分别为定子电压|uq|max的
27、交轴和直轴分量。的交轴和直轴分量。n对于对于A1运行点,可得其动态电压方程运行点,可得其动态电压方程 qqrdddsdiLdtdiLiRufddrqqqsqiLdtdiLiRu01maxqqrdddiLudtdiL01maxfddrqqqiLudtdiLn也就是,当电机运行在也就是,当电机运行在A1点时,电流调节点时,电流调节器处于饱和状态,控制系统失去了对定子器处于饱和状态,控制系统失去了对定子电流的控制能力。电流的控制能力。n在这种情况下,电流矢量在这种情况下,电流矢量is将会脱离将会脱离A1点,点,图图3-28b(p124)可见,其可能向右移动,也可见,其可能向右移动,也可能向左移动。可
28、能向左移动。n如果在如果在A1点能够控制交轴分量点能够控制交轴分量iq逐渐减小,逐渐减小,直轴分量直轴分量id逐渐增大,将会使定子电流矢量逐渐增大,将会使定子电流矢量is向左移动。向左移动。n由图由图3-14(p113)和式和式(3-85)可知,这会使定可知,这会使定子电压子电压|us|减小,于是减小,于是|us|r2时,如果按照上时,如果按照上述规律控制定子电流矢量,就可获得最大述规律控制定子电流矢量,就可获得最大功率输出。功率输出。n定子电流矢量沿着该轨迹向定子电流矢量沿着该轨迹向A4点逼近,点逼近,A4点的坐标是:点的坐标是:id=-e0/xd,iq=0。n这是一个极限运行点,理论上电动
29、机转速这是一个极限运行点,理论上电动机转速可达无穷大。可达无穷大。n如果如果e0/xd|id|max,则最大功率输则最大功率输出轨迹将落在出轨迹将落在电流极限圆外,电流极限圆外,如图如图3-30(p126),在,在这种情况下,这种情况下,最大功率输出最大功率输出是无法实现的。是无法实现的。n综上,如图综上,如图3-28(p124),在整个速度范围,在整个速度范围内对定子电流矢量可做如下控制:内对定子电流矢量可做如下控制:n区间区间I(rr1):定子电流可按式:定子电流可按式(3-104)式式(3-106)控制,定子电流矢量将沿着最大控制,定子电流矢量将沿着最大转矩转矩/电流比轨迹变化。电流比轨
30、迹变化。n区间区间II(r1r2):id和和iq可按式可按式(3-109)和式和式(3-110)进行控制,定子电流矢量沿着最大进行控制,定子电流矢量沿着最大功率输出轨迹由功率输出轨迹由A2点向点向A4移动。当然,如移动。当然,如果果e0/xd|id|max,这种控制就不存在了。,这种控制就不存在了。n在这种情况下,可将区间在这种情况下,可将区间II的控制由的控制由A2点延点延伸到伸到A3点,如图点,如图3-30(p126):与:与A3点对应点对应的转速为的转速为r3,这是弱磁控制在理论上可达,这是弱磁控制在理论上可达到的最高转速。到的最高转速。n图图3-31(p127)给出了面装式给出了面装式PMSM的功率的功率输出特性,图中的参数与图输出特性,图中的参数与图3-28a(p124)中中相同。相同。n在区间在区间I,电动机恒转矩输出,且输出最大,电动机恒转矩输出,且输出最大转矩,输出功率与转速成正比。转矩,输出功率与转速成正比。n在区间在区间II,若不进行弱磁控制,输出功率将,若不进行弱磁控制,输出功率将急剧减少,如图中虚线,若进行弱磁控制,急剧减少,如图中虚线,若进行弱磁控制,输出功率将继续增加。输出功率将继续增加。n在区间在区间III,通过控制,通过控制id和和id可输出最大功率,可输出最大功率,并保持几乎不变。并保持几乎不变。