1、1学习目标1.会用待定系数法求二次函数的解析式.(难点)2.会根据待定系数法解决关于二次函数的相关问题.(重点)1.一次函数y=kx+b(k0)有几个待定系数?通常需要已知几个点的坐标求出它的解析式?2.求一次函数解析式的方法是什么?它的一般步骤是什么?2个2个待定系数法(1)设:(表达式)(2)代:(坐标代入)(3)解:方程(组)(4)还原:(写解析式)一般式法二次函数的解析式探究归纳问题1:(1)二次函数y=ax2+bx+c(a0)中有几个待定系数?需要几个抛物线上的点的坐标才能求出来?3个3个(2)下面是我们用描点法画二次函数的图象所列表格的一部分:x-3-2-1012y010-3-8-
2、151解:设这个二次函数的解析式是y=ax2+bx+c,把(-3,0),(),(-1,0),(),(0,-3)代入y=ax2+bx+c,得选取(-3,0),(),(-1,0),(),(0,-3),),试求出这个二次函数的解析式.9a-3b+c=0,a-b+c=0,c=-3,解得a=-1,b=-4,c=-3.所求的二次函数的解析式是y=-x2-4x-3.待定系数法步骤:1.设:(表达式)2.代:(坐标代入)3.解:方程(组)4.还原:(写解析式)这种已知三点求二次函数解析式的方法叫做一般式法.其步骤是:设函数解析式为y=ax2+bx+c;代入后得到一个三元一次方程组;解方程组得到a、b、c的值;
3、把待定系数用数字换掉,写出函数解析式.一般式法求二次函数解析式的方法 解:(-3,0)()(-1,0)是抛物线y=ax2+bx+c与x轴的交点.所以可设这个二次函数的解析式是y=a(x-x1)(x-x2).(其中x1、x2为交点的横坐标)因此得 y=a(x+3)(x+1).再把点(0,-3)代入上式,得a(0+3)(0+1)=-3,解得a=-1,所求的二次函数的解析式是y=-(x+3)(x+1),即即y=-x2-4x-3.选取(-3,0),(),(-1,0),(),(0,-3),),试求出这个二次函数的解析式.交点法二次函数的解析式yO1-1-2-3-4-1-2-3-4-5122交点法求二次函
4、数解析式的方法这种知道抛物线与x轴的交点坐标,求解析式的方法叫做交点法.其步骤是:设函数解析式是y=a(x-x1)(x-x2);先把两交点的横坐标x1、x2代入,得到关于a的一元一次方程;将方程的解代入原方程求出a值;a用数值换掉,写出函数解析式.想一想确定二次函数的这三点应满足什么条件?任意三点不在同一直线上(其中两点的连线可平行于x轴,但不可以平行y轴).顶点法求二次函数的解析式 选取顶点(-2,1)和点(1,-8),),试求出这个二次函数的解析式.解:设这个二次函数的解析式是y=a(x-h)2+k,把顶点(-2,1)代入y=a(x-h)2+k,得 y=a(x+2)2+1,再把点(1,-8
5、)代入上式,得 a(1+2)2+1=-8,解得a=-1.所求的二次函数的解析式是y=-(x+2)2+1或y=-x2-4x-3.3顶点法求二次函数的方法这种知道抛物线的顶点坐标,求解析式的方法叫做顶点法.其步骤是:设函数解析式是y=a(x-h)2+k;先代入顶点坐标,得到关于a的一元一次方程;将另一点的坐标代入原方程求出a值;a用数值换掉,写出函数解析式.想一想 直接观察上面表格,你能猜想出当x=-6 时,该二次函数对应的函数值是多少?x-3-2-1012y010-3-8-15-15 利用二次函数图象的对称性.由表格信息可知,抛物线的对称轴是直线x=-2,横坐标为2和-6的两点必定是该抛物线上的
6、一对对称点,故可知x=-6与x=2的函数值必定相等.xyO1 2-1-2-3-4-1-2-3-4-5-5-6-6-7-8-9-10-11-12-13-14-15-1612y=-x2-4x-31.如图,平面直角坐标系中,函数图象的表达式应是 .234yx=注意:注意:y=ax2与y=ax2+k、y=a(x-h)2、y=a(x-h)2+k一样都是顶点式,只不过前三者是顶点式的特殊形式.yO-1-2-3-4-1213452.过点(2,4),),且当x=1时,y有最值为6,则其解析式是 .顶点坐标是(1,6)y=-2(x-1)2+63.综合题:如图,已知二次函数 的图象经过A(2,0),B(0,6)两点(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连结BA、BC,求ABC的面积212yxbx c=-+ABCyO(1)2146;2yxx(2)ABC的面积是6.已知三点坐标已知顶点坐标或对称轴或最值已知抛物线与x轴的两个交点已知条件所选方法用一般式法:y=ax2+bx+c用顶点法:y=a(x-h)2+k用交点法:y=a(x-x1)(x-x2)(x1、x2为交点的横坐标)待定系数法求二次函数解析式