可化为一元一次方程的分式方程(第课时)(优质课)获奖课件-公开课一等奖课件.ppt

上传人(卖家):晟晟文业 文档编号:3663755 上传时间:2022-10-02 格式:PPT 页数:136 大小:3.74MB
下载 相关 举报
可化为一元一次方程的分式方程(第课时)(优质课)获奖课件-公开课一等奖课件.ppt_第1页
第1页 / 共136页
可化为一元一次方程的分式方程(第课时)(优质课)获奖课件-公开课一等奖课件.ppt_第2页
第2页 / 共136页
可化为一元一次方程的分式方程(第课时)(优质课)获奖课件-公开课一等奖课件.ppt_第3页
第3页 / 共136页
可化为一元一次方程的分式方程(第课时)(优质课)获奖课件-公开课一等奖课件.ppt_第4页
第4页 / 共136页
可化为一元一次方程的分式方程(第课时)(优质课)获奖课件-公开课一等奖课件.ppt_第5页
第5页 / 共136页
点击查看更多>>
资源描述

1、可化为一元一次方程的分式方程(第课时)(优质课)获奖课件-公开课一等奖课件分式方程分式方程一元一次方程一元一次方程x=ax=a使最简个分使最简个分母的值等于母的值等于0?x=a是原方程的是原方程的增根,原方程无解增根,原方程无解x=a是原方程的根是原方程的根否否是是方程两边都乘各个方程两边都乘各个分式的最简公分母分式的最简公分母解一元一次方程解一元一次方程检验检验解解分分式式方方程程的的步步骤骤基本思路是:基本思路是:化化解解验验分式方程分式方程去分母去分母整式方程整式方程转转化化2、把分式方程、把分式方程 化为一元一次方程是化为一元一次方程是 。x2+x+3x=13、方程、方程 的解是的解是

2、 。x-323x-2=5、当、当x=时,分式时,分式 的值与分式的值与分式 的值相等?的值相等?4-x4-2xx-4x-51 1、判断下列式子哪些是分式方程?、判断下列式子哪些是分式方程?x+y=55x+2=32y-zx1x+5y=0 x1+2x=54、如果、如果x=2是分式方程是分式方程 的解,那么的解,那么a=。ax-1x-3=-26、若方程、若方程 有增根,则增根一定是有增根,则增根一定是 。x+3mx+3 1+1=7、解方程、解方程(1).x90 x-660=(2).x 5x-2 7=(3).x-32x3=(4).x-11x2-12=x=6x=543-1x=-3x=18x=-5x=9无

3、解无解举举例例例例1 解方程解方程:7+3=.11xxx-解解 方程两边同乘最简公分母方程两边同乘最简公分母x-1,得得 7+3(x-1)=x.解这个一元一次方程,得解这个一元一次方程,得x=-2.检验:把检验:把x=-2时,最简公分母时,最简公分母x-1的值为的值为:-2-1=-30因此因此x=-2是原方程的一个根是原方程的一个根.例例2 解方程:解方程:x-1x+1-x2-14=1解解 方程两边同乘最简公分母方程两边同乘最简公分母x2-1,得:得:(x+1)2-4=x2-1 解得:解得:x=1检验:当检验:当x=1时,时,x-1=0,x2-1=0因此,因此,x=1是增根,原方程无解。是增根

4、,原方程无解。注意:分式方程化注意:分式方程化整式方程时,不含分整式方程时,不含分母的项也要乘以最母的项也要乘以最简公分母。简公分母。1 1、判断下列解法是否正确:、判断下列解法是否正确:(1).解方程:解方程:去分母得:去分母得:36(x-1)=30 x+1x36=x-130+1(2).解方程:解方程:去分母得:去分母得:3-2x2=(2x-4)-2x2-4x2x-43-2x2=-x31312、解方程、解方程(1).x-1x-1=(x-1)(x+2)336(x-1)=30 x+x(x-1)3(3-2x2)=(2x-4)-3x(2x-4)x=1(增根增根)原方程无解原方程无解13321xxxx

5、(2)23x=-例例1、解方程、解方程x-413x-310 x-5 4x-1 1-=原方程变形为:(x-4)(x-3)3x+1(x-5)(x-1)3x+1=两边分别通分两边分别通分(1)若若3x+1=0,即即x=-时,原方程显然成立。时,原方程显然成立。31(2)若若3x+10,原方程的两边同除以,原方程的两边同除以3x+1得:(x-4)(x-3)1(x-5)(x-1)1=即:即:(x-4)(x-3)=(x-5)(x-1)解得:解得:x=7经检验,经检验,x=-,x=7都是原方程的解。都是原方程的解。31分类讨论分类讨论写出所有解写出所有解x-12x+2a+1x2+x-23a-=会产生增根?会

6、产生增根?(a-1)x=5-2a当增根为当增根为x=1=1时,得:时,得:a=2=2当增根为当增根为x=-2=-2时,时,a无解无解(不存在不存在).故故a=2=2时时,原方程会产生增根原方程会产生增根._axxaxx ,则的增根是、方程111111._mxmmx 有增根,则的方程、若关于1312(产生增根的原因产生增根的原因)。(x=1,x=-2)分析:分析:原方程产生的增根是多少?原方程产生的增根是多少?能否将这两个值直接代入原方程能否将这两个值直接代入原方程?因而先将分式方程化成整式方程因而先将分式方程化成整式方程.再把增根代入计算出再把增根代入计算出a。1、解方程、解方程作业作业133

7、21xxxx(1)524;2332xxx 21424563524xxxx 2283224xxxxx2、x为何值时,分式为何值时,分式 的值比分式的值比分式 的值大的值大1?2-x3x-2x-3253242mxxx当m取何值时,关于x的方程=+有增根?3、中考中考 试题试题2、分式方程、分式方程 的解是的解是()A.-3 B.2 C.3 D.-2 53=2-xxA65563223;B.;C.;D.A.125xxxx与4 4.当当x=()=()时时,互为相反数互为相反数.3、解分式方程、解分式方程 ,可知方程(,可知方程()A.解为解为x=2 B.解为解为x=4 C.解为解为x=3 D.无解无解

8、11+2=22xxx-D1、分式方程、分式方程 的解为的解为 .12=+11-xxx=-3 课外练习课外练习3221)1(xx1、解方程:、解方程:2121)2(xxx015)3(22xxxx3、如果、如果 有增根,那么增根为有增根,那么增根为 .xxx21321x=22、关于、关于x的方程的方程 =4 的解是的解是x=,则则a=.xax12124、若分式方程、若分式方程 有增根有增根,则则 a=.04422xxa-15、若方程、若方程 会产生增根,则(会产生增根,则()A、k=2 B、k=2 C、k=-2 D、k为任何实为任何实数数4xx412xk2x12 6、若关于、若关于x的方程,的方程

9、,有增根,求有增根,求a的值。的值。13xax4x2 Ba=37 7、解分式方程、解分式方程76122xx(1 1)01522xxxx(4).16235222xxxxx)5)(4(1)3)(2(18xxxx 111.32xxxx 212122339xxx22231 xxx(6).221122 xxx(7).实实 数数本章内容第第3章章本课内容本节内容3.1动脑筋动脑筋 某家庭在装修儿童房时需铺地垫某家庭在装修儿童房时需铺地垫10.8m2,刚,刚好用去正方形的地垫好用去正方形的地垫30块块.你能算出每块地垫的你能算出每块地垫的边长是多少吗边长是多少吗?每块正方形地垫的面积是每块正方形地垫的面积是

10、 10.830=0.36(m2).即即 边长边长边长边长=0.36.由于由于 0.62=0.36,因此面积为因此面积为0.36m2的正方形地垫的的正方形地垫的边长是边长是0.6m.在实际问题中,有时要找一个数,使它的平方在实际问题中,有时要找一个数,使它的平方等于给定的数等于给定的数.由此我们抽象出下述概念:由此我们抽象出下述概念:如果有一个数如果有一个数r,使得,使得r2=a,那么我们把,那么我们把r叫作叫作a的一个平方根,的一个平方根,也叫作二次方根也叫作二次方根.0.32=0.09结论结论 若若 r2=a,则,则 r 是是 a 的一个平方根的一个平方根.结论结论 例如,由于例如,由于22

11、=4,因此,因此2是是4的一个平方根的一个平方根.探究探究 4的平方根除了的平方根除了2以外,还有其他的数吗?以外,还有其他的数吗?为什么为什么-2也是也是4的平方根?的平方根?因为因为(-2)2=4,因此因此-2也也是是4的一个平方根的一个平方根.除了除了2和和-2以外,以外,4的平方根还有其他的数吗?的平方根还有其他的数吗?除了除了2和和-2以外,以外,4的平方根还有其他的数吗?的平方根还有其他的数吗?因为边长大于因为边长大于2的正方形,它的面积一定大于的正方形,它的面积一定大于4,所以,比所以,比2大的数都不是大的数都不是4的平方根的平方根.边长为边长为2边长为边长为4 边长小于边长小于

12、2的正方形,它的面积一定小于的正方形,它的面积一定小于4,因此,因此,比比2小的正数都不是小的正数都不是4的平方根的平方根.边长为边长为2类似地,类似地,由于由于(-b)2=b2,因此,因此,-2以外的负数都不是以外的负数都不是4的的平方根平方根.显然显然0不是不是4的平方根的平方根.所以,所以,4的平方根有且只有两个:的平方根有且只有两个:2与与-2.如果如果r是正数是正数a的一个平方根,那么的一个平方根,那么a的平方根有且只有两个:的平方根有且只有两个:r与与-r.结论结论 我们把我们把a的正平方根叫作的正平方根叫作a的的算术平方根算术平方根,记,记作作 ,读作,读作“根号根号a”;a 这

13、样,正数这样,正数a的平方根可以用的平方根可以用 “”来表来表示示.a 把把a的负平方根记作的负平方根记作 ,读作,读作“负根号负根号a”.”.-a例如,例如,4的平方根是的平方根是2与与-2,即,即4=2.零的平方根是多少零的平方根是多少?负数有平方根吗负数有平方根吗?说一说说一说 由于由于02=0,而非零数的平方不等于,而非零数的平方不等于0,因此,因此零零的平方根就是的平方根就是0本身本身.我们把我们把0的平方根也叫作的平方根也叫作0的的算术平方根,记作算术平方根,记作 ,即即 .00=0 由于同号两数相乘得正数,且由于同号两数相乘得正数,且02=0,即在迄,即在迄今为止我们所认识的数中

14、,任何一个数的平方都今为止我们所认识的数中,任何一个数的平方都不会是负数,因此不会是负数,因此负数没有平方根负数没有平方根.求一个非负数的平方根的运算,叫作求一个非负数的平方根的运算,叫作开平方开平方.开平方与平方互为逆运算,根据这种关系,开平方与平方互为逆运算,根据这种关系,可以求一个数的平方根可以求一个数的平方根.+1-1+2-2+3-3149开平方开平方平方平方举举例例例例1 分别求下列各数的平方根:分别求下列各数的平方根:36,1.21.259解解 由于由于62=36,因此因此36的平方根是的平方根是6与与-6.36是正数是正数(1)36 有两个平方根有两个平方根 即即36=6.解解(

15、2)259 由于由于 2=,25953有两个平方根有两个平方根 因此因此 的平方根是的平方根是 与与 .5325953-解解 由于由于1.12=1.21,有两个平方根有两个平方根(3)1.21 因此因此1.21的平方根是的平方根是1.1与与-1.1.255=.93即即即即1.21=1.1.举举例例例例2 分别求下列各数的算术平方根:分别求下列各数的算术平方根:100,0.49.1625解解 由于由于102=100,(1)100 算术平方根就是正平方根算术平方根就是正平方根 因此因此 ;10010 解解(2)1625 由于由于 2=,162545算术平方根就是正平方根算术平方根就是正平方根.解解

16、 由于由于0.72=0.49,算术平方根就是正平方根算术平方根就是正平方根.(3)0.49 因此因此 ;164255 因此因此 .0.490.7 练习练习1.分别求分别求 64,6.25 的的平方根平方根.4981解解 由于由于82=64 所以所以64的平方根是的平方根是8与与-8.(1)64 由于由于 所以所以 的平方根是的平方根是 与与 .(2)49812 749=98149817979-由于由于82.52=6.25 所以所以6.25的平方根是的平方根是2.5与与-2.5.(3)6.252.分别求分别求 81,0.16 的的算术平方根算术平方根.2564 由于由于 因此因此 .(2)256

17、42 525=864255648=解解 由于由于92=81 因此因此 .(1)81819 由于由于0.42=0.16 因此因此 .(3)0.160.160.4 3.判断下列说法是否正确判断下列说法是否正确.正确正确.(4)(-4)2的平方根是的平方根是-4.(1)是是 的一个平方根;的一个平方根;572549(2)是是6的算术平方根;的算术平方根;6(3)的值是的值是4;16正确正确.不正确不正确.不正确,是不正确,是4.做一做做一做 将一个长为将一个长为4cm,宽为,宽为2cm的长方形纸片的长方形纸片剪拼成一个正方形剪拼成一个正方形.最后得到的这个正方形的面积是多少呢最后得到的这个正方形的面

18、积是多少呢?它的边长是整数吗它的边长是整数吗?正方形的面积为正方形的面积为8cm2,由于由于22=4,32=9,又又489,且面积较大的正方形的边长也较大,且面积较大的正方形的边长也较大,因此面积为因此面积为8cm2的正方形的边长不是整数的正方形的边长不是整数.最后得到的这个正方形的面积是多少呢最后得到的这个正方形的面积是多少呢?它的边长是整数吗它的边长是整数吗?动脑筋动脑筋观察下列结果观察下列结果:2.82=7.84,2.92=8.41;2.822=7.9524 2.832=8.0089 2.8282=7.997584 2.8292=8.003241 从上述数据,你能猜出面积为从上述数据,你

19、能猜出面积为8的正方形的边长的正方形的边长是多少吗是多少吗?面积为面积为8的正方形,它的的正方形,它的边长应该比边长应该比2.828大,比大,比2.829小,小,结论结论 由此猜想,面积为由此猜想,面积为8cm8cm2 2的正方形,它的边长是一个小的正方形,它的边长是一个小数点后面的位数可以不断增加的小数数点后面的位数可以不断增加的小数.事实上,我们可以说明这个边长不是分数,从而事实上,我们可以说明这个边长不是分数,从而它既不是有限小数,也不是无限循环小数它既不是有限小数,也不是无限循环小数,这种小数这种小数叫作叫作无限不循环小数无限不循环小数.我们把无限不循环小数叫作我们把无限不循环小数叫作

20、无理数无理数.小提示 由于正方形的边长的平方等于它的面积,因由于正方形的边长的平方等于它的面积,因此面积为此面积为8cm2的正方形的边长可以记作的正方形的边长可以记作 cm.8 从上述分析知道,从上述分析知道,是一个无限不循环小数,是一个无限不循环小数,即即 是一个无理数是一个无理数.88 圆周率圆周率 ,也是一个无理数,也是一个无理数.=3.14159565与有理数一样,无理数也有正负之分,与有理数一样,无理数也有正负之分,都是无理数都是无理数.=1.41421362=1.73205083例如,例如,是正无理数,是正无理数,23 ,是负无理数是负无理数.2-3-根据实际需要,我们往往用一个有

21、限小数来近根据实际需要,我们往往用一个有限小数来近似地表示一个无理数似地表示一个无理数.例如例如 ,用四舍五入法,分别取,用四舍五入法,分别取到小数点后面第二位,第三位,到小数点后面第二位,第三位,得到,得到 ,我们称,我们称3.14,3.142是是 的精确到小数的精确到小数点后面第二位,第三位的近似值点后面第二位,第三位的近似值.=3.141592653.143.142 3.14,3.142,3.141 6,都是都是 的近似值,称它的近似值,称它们为近似数们为近似数.利用计算器可以求一个正数的算术平方利用计算器可以求一个正数的算术平方根或它的近似值根或它的近似值.小提示 我们可以用计算器求一

22、个正数我们可以用计算器求一个正数a的平方根,的平方根,其操作方法是按顺序进行按键输入:其操作方法是按顺序进行按键输入:举举例例例例3 用计算器求下列各式的值用计算器求下列各式的值.1.用计算器求下列各式的值:用计算器求下列各式的值:解解3136561.53761.24练习练习 1 3136 2 1.5376()()2.面积为面积为6cm2的正方形,它的边长是多少的正方形,它的边长是多少?用计算器求边长的近似值用计算器求边长的近似值(精确到精确到0.001cm)?)?正方形的面积是正方形的面积是6cm2,因此它的边长为因此它的边长为 cm.6解解用计算器计算用计算器计算 :显示:显示2.4494

23、897662.449 所以,所以,3.用计算器分别求用计算器分别求 ,的近的近 似值似值(精确到精确到0.001).235110.58解解21.41431.73252.236113.3170.580.762中考中考 试题试题例例1 9的算术平方根是的算术平方根是().A.-3 B.3 C.3 D.81B解解 因为因为32=9,所以,所以9的算术平方根是的算术平方根是3.即即 .故,应选择故,应选择B.9=3中考中考 试题试题例例2 4的平方根是的平方根是 .2解解 因为因为(2)2=4,所以,所以4的平方根是的平方根是2.即即 .故,答案是故,答案是2.4=2中考中考 试题试题例例3 若若2m

24、-4与与3m-1是同一个数的平方根,则是同一个数的平方根,则m为为().().A.-3 B.1 C.-3或或1 D.-1C解解 依题意,得依题意,得(2m-4)+(3m-1)=0,解之,得解之,得m=1.或或2m-4=3m-1.解之,得解之,得m=-3.故,应选择故,应选择C.根据平方根的性质,一个正数有两个平方根,且它们互为根据平方根的性质,一个正数有两个平方根,且它们互为相反数,即相反数,即(2m-4)+(3m-1)=0;而本题隐含一个条件,也就是;而本题隐含一个条件,也就是说,说,2m-4与与3m-1也可能是其中的一个平方根,即也可能是其中的一个平方根,即2m-4=3m-1.分析分析结结

25、 束束一元一次不等式(组)一元一次不等式(组)本章内容第第4章章本课内容本节内容4.1 现实生活中,数量之间存在着相等与不相等的现实生活中,数量之间存在着相等与不相等的关系关系.对于不相等的关系问题,我们如何用式子来表对于不相等的关系问题,我们如何用式子来表示它们呢示它们呢?例如,小明的身高为例如,小明的身高为155cm,小聪的身高为,小聪的身高为156cm;则我们可以用不等号则我们可以用不等号“”或或“155或或155 50.(2)一辆轿车在一条规定车速不低于一辆轿车在一条规定车速不低于60km/h,且,且 不高于不高于100 km/h的高速公路上行驶,如何用的高速公路上行驶,如何用 式子来

26、表示轿车在该高速公路上行驶的路程式子来表示轿车在该高速公路上行驶的路程 s(km)与行驶时间与行驶时间x(h)之间的关系呢之间的关系呢?根据路程与速度、根据路程与速度、时间之间的关系可得:时间之间的关系可得:s60 x,且,且s100 x.像像156155,15550,s60 x,s100 x 这样,我们把用不等号这样,我们把用不等号(,-7(1)x的的5倍大于倍大于-7;(2)a与与b的和的一半小于的和的一半小于-1;(3)长、宽分别为长、宽分别为xcm,ycm的长方形的面积的长方形的面积 小于边长为小于边长为acm的正方形的面积的正方形的面积.解解 xy a2+1.2a b解解-已知一支圆

27、珠笔已知一支圆珠笔1.5元,签字笔与圆珠笔相元,签字笔与圆珠笔相比每支贵比每支贵2元元.做一做做一做 小华想要买小华想要买x支圆珠笔和支圆珠笔和10支签字笔,若付支签字笔,若付50元仍找回若干元,则如何用含元仍找回若干元,则如何用含x的不等式来表的不等式来表示小华所需支付的金额与示小华所需支付的金额与50元之间的关系元之间的关系?练习练习1.用不等式表示下列数量关系:用不等式表示下列数量关系:(1)a是非负数;是非负数;(2)x比比-3小;小;(3)两数两数m与与n的差大于的差大于5.解解 a 0.解解 x 5.2.奥运射箭比赛,每一箭满分为奥运射箭比赛,每一箭满分为10分分.某选手在某选手在

28、 参加比赛时,前十箭中最低得分为参加比赛时,前十箭中最低得分为7分,求该分,求该 选手前十箭总得分选手前十箭总得分x的范围的范围.解解 100 x 70.结结 束束实实 数数本章内容第第3章章本课内容本节内容3.1动脑筋动脑筋 某家庭在装修儿童房时需铺地垫某家庭在装修儿童房时需铺地垫10.8m2,刚,刚好用去正方形的地垫好用去正方形的地垫30块块.你能算出每块地垫的你能算出每块地垫的边长是多少吗边长是多少吗?每块正方形地垫的面积是每块正方形地垫的面积是 10.830=0.36(m2).即即 边长边长边长边长=0.36.由于由于 0.62=0.36,因此面积为因此面积为0.36m2的正方形地垫的

29、的正方形地垫的边长是边长是0.6m.在实际问题中,有时要找一个数,使它的平方在实际问题中,有时要找一个数,使它的平方等于给定的数等于给定的数.由此我们抽象出下述概念:由此我们抽象出下述概念:如果有一个数如果有一个数r,使得,使得r2=a,那么我们把,那么我们把r叫作叫作a的一个平方根,的一个平方根,也叫作二次方根也叫作二次方根.0.32=0.09结论结论 若若 r2=a,则,则 r 是是 a 的一个平方根的一个平方根.结论结论 例如,由于例如,由于22=4,因此,因此2是是4的一个平方根的一个平方根.探究探究 4的平方根除了的平方根除了2以外,还有其他的数吗?以外,还有其他的数吗?为什么为什么

30、-2也是也是4的平方根?的平方根?因为因为(-2)2=4,因此因此-2也也是是4的一个平方根的一个平方根.除了除了2和和-2以外,以外,4的平方根还有其他的数吗?的平方根还有其他的数吗?除了除了2和和-2以外,以外,4的平方根还有其他的数吗?的平方根还有其他的数吗?因为边长大于因为边长大于2的正方形,它的面积一定大于的正方形,它的面积一定大于4,所以,比所以,比2大的数都不是大的数都不是4的平方根的平方根.边长为边长为2边长为边长为4 边长小于边长小于2的正方形,它的面积一定小于的正方形,它的面积一定小于4,因此,因此,比比2小的正数都不是小的正数都不是4的平方根的平方根.边长为边长为2类似地

31、,类似地,由于由于(-b)2=b2,因此,因此,-2以外的负数都不是以外的负数都不是4的的平方根平方根.显然显然0不是不是4的平方根的平方根.所以,所以,4的平方根有且只有两个:的平方根有且只有两个:2与与-2.如果如果r是正数是正数a的一个平方根,那么的一个平方根,那么a的平方根有且只有两个:的平方根有且只有两个:r与与-r.结论结论 我们把我们把a的正平方根叫作的正平方根叫作a的的算术平方根算术平方根,记,记作作 ,读作,读作“根号根号a”;a 这样,正数这样,正数a的平方根可以用的平方根可以用 “”来表来表示示.a 把把a的负平方根记作的负平方根记作 ,读作,读作“负根号负根号a”.”.

32、-a例如,例如,4的平方根是的平方根是2与与-2,即,即4=2.零的平方根是多少零的平方根是多少?负数有平方根吗负数有平方根吗?说一说说一说 由于由于02=0,而非零数的平方不等于,而非零数的平方不等于0,因此,因此零零的平方根就是的平方根就是0本身本身.我们把我们把0的平方根也叫作的平方根也叫作0的的算术平方根,记作算术平方根,记作 ,即即 .00=0 由于同号两数相乘得正数,且由于同号两数相乘得正数,且02=0,即在迄,即在迄今为止我们所认识的数中,任何一个数的平方都今为止我们所认识的数中,任何一个数的平方都不会是负数,因此不会是负数,因此负数没有平方根负数没有平方根.求一个非负数的平方根

33、的运算,叫作求一个非负数的平方根的运算,叫作开平方开平方.开平方与平方互为逆运算,根据这种关系,开平方与平方互为逆运算,根据这种关系,可以求一个数的平方根可以求一个数的平方根.+1-1+2-2+3-3149开平方开平方平方平方举举例例例例1 分别求下列各数的平方根:分别求下列各数的平方根:36,1.21.259解解 由于由于62=36,因此因此36的平方根是的平方根是6与与-6.36是正数是正数(1)36 有两个平方根有两个平方根 即即36=6.解解(2)259 由于由于 2=,25953有两个平方根有两个平方根 因此因此 的平方根是的平方根是 与与 .5325953-解解 由于由于1.12=

34、1.21,有两个平方根有两个平方根(3)1.21 因此因此1.21的平方根是的平方根是1.1与与-1.1.255=.93即即即即1.21=1.1.举举例例例例2 分别求下列各数的算术平方根:分别求下列各数的算术平方根:100,0.49.1625解解 由于由于102=100,(1)100 算术平方根就是正平方根算术平方根就是正平方根 因此因此 ;10010 解解(2)1625 由于由于 2=,162545算术平方根就是正平方根算术平方根就是正平方根.解解 由于由于0.72=0.49,算术平方根就是正平方根算术平方根就是正平方根.(3)0.49 因此因此 ;164255 因此因此 .0.490.7

35、 练习练习1.分别求分别求 64,6.25 的的平方根平方根.4981解解 由于由于82=64 所以所以64的平方根是的平方根是8与与-8.(1)64 由于由于 所以所以 的平方根是的平方根是 与与 .(2)49812 749=98149817979-由于由于82.52=6.25 所以所以6.25的平方根是的平方根是2.5与与-2.5.(3)6.252.分别求分别求 81,0.16 的的算术平方根算术平方根.2564 由于由于 因此因此 .(2)25642 525=864255648=解解 由于由于92=81 因此因此 .(1)81819 由于由于0.42=0.16 因此因此 .(3)0.16

36、0.160.4 3.判断下列说法是否正确判断下列说法是否正确.正确正确.(4)(-4)2的平方根是的平方根是-4.(1)是是 的一个平方根;的一个平方根;572549(2)是是6的算术平方根;的算术平方根;6(3)的值是的值是4;16正确正确.不正确不正确.不正确,是不正确,是4.做一做做一做 将一个长为将一个长为4cm,宽为,宽为2cm的长方形纸片的长方形纸片剪拼成一个正方形剪拼成一个正方形.最后得到的这个正方形的面积是多少呢最后得到的这个正方形的面积是多少呢?它的边长是整数吗它的边长是整数吗?正方形的面积为正方形的面积为8cm2,由于由于22=4,32=9,又又489,且面积较大的正方形的

37、边长也较大,且面积较大的正方形的边长也较大,因此面积为因此面积为8cm2的正方形的边长不是整数的正方形的边长不是整数.最后得到的这个正方形的面积是多少呢最后得到的这个正方形的面积是多少呢?它的边长是整数吗它的边长是整数吗?动脑筋动脑筋观察下列结果观察下列结果:2.82=7.84,2.92=8.41;2.822=7.9524 2.832=8.0089 2.8282=7.997584 2.8292=8.003241 从上述数据,你能猜出面积为从上述数据,你能猜出面积为8的正方形的边长的正方形的边长是多少吗是多少吗?面积为面积为8的正方形,它的的正方形,它的边长应该比边长应该比2.828大,比大,比

38、2.829小,小,结论结论 由此猜想,面积为由此猜想,面积为8cm8cm2 2的正方形,它的边长是一个小的正方形,它的边长是一个小数点后面的位数可以不断增加的小数数点后面的位数可以不断增加的小数.事实上,我们可以说明这个边长不是分数,从而事实上,我们可以说明这个边长不是分数,从而它既不是有限小数,也不是无限循环小数它既不是有限小数,也不是无限循环小数,这种小数这种小数叫作叫作无限不循环小数无限不循环小数.我们把无限不循环小数叫作我们把无限不循环小数叫作无理数无理数.小提示 由于正方形的边长的平方等于它的面积,因由于正方形的边长的平方等于它的面积,因此面积为此面积为8cm2的正方形的边长可以记作

39、的正方形的边长可以记作 cm.8 从上述分析知道,从上述分析知道,是一个无限不循环小数,是一个无限不循环小数,即即 是一个无理数是一个无理数.88 圆周率圆周率 ,也是一个无理数,也是一个无理数.=3.14159565与有理数一样,无理数也有正负之分,与有理数一样,无理数也有正负之分,都是无理数都是无理数.=1.41421362=1.73205083例如,例如,是正无理数,是正无理数,23 ,是负无理数是负无理数.2-3-根据实际需要,我们往往用一个有限小数来近根据实际需要,我们往往用一个有限小数来近似地表示一个无理数似地表示一个无理数.例如例如 ,用四舍五入法,分别取,用四舍五入法,分别取到

40、小数点后面第二位,第三位,到小数点后面第二位,第三位,得到,得到 ,我们称,我们称3.14,3.142是是 的精确到小数的精确到小数点后面第二位,第三位的近似值点后面第二位,第三位的近似值.=3.141592653.143.142 3.14,3.142,3.141 6,都是都是 的近似值,称它的近似值,称它们为近似数们为近似数.利用计算器可以求一个正数的算术平方利用计算器可以求一个正数的算术平方根或它的近似值根或它的近似值.小提示 我们可以用计算器求一个正数我们可以用计算器求一个正数a的平方根,的平方根,其操作方法是按顺序进行按键输入:其操作方法是按顺序进行按键输入:举举例例例例3 用计算器求

41、下列各式的值用计算器求下列各式的值.1.用计算器求下列各式的值:用计算器求下列各式的值:解解3136561.53761.24练习练习 1 3136 2 1.5376()()2.面积为面积为6cm2的正方形,它的边长是多少的正方形,它的边长是多少?用计算器求边长的近似值用计算器求边长的近似值(精确到精确到0.001cm)?)?正方形的面积是正方形的面积是6cm2,因此它的边长为因此它的边长为 cm.6解解用计算器计算用计算器计算 :显示:显示2.4494897662.449 所以,所以,3.用计算器分别求用计算器分别求 ,的近的近 似值似值(精确到精确到0.001).235110.58解解21.

42、41431.73252.236113.3170.580.762中考中考 试题试题例例1 9的算术平方根是的算术平方根是().A.-3 B.3 C.3 D.81B解解 因为因为32=9,所以,所以9的算术平方根是的算术平方根是3.即即 .故,应选择故,应选择B.9=3中考中考 试题试题例例2 4的平方根是的平方根是 .2解解 因为因为(2)2=4,所以,所以4的平方根是的平方根是2.即即 .故,答案是故,答案是2.4=2中考中考 试题试题例例3 若若2m-4与与3m-1是同一个数的平方根,则是同一个数的平方根,则m为为().().A.-3 B.1 C.-3或或1 D.-1C解解 依题意,得依题意

43、,得(2m-4)+(3m-1)=0,解之,得解之,得m=1.或或2m-4=3m-1.解之,得解之,得m=-3.故,应选择故,应选择C.根据平方根的性质,一个正数有两个平方根,且它们互为根据平方根的性质,一个正数有两个平方根,且它们互为相反数,即相反数,即(2m-4)+(3m-1)=0;而本题隐含一个条件,也就是;而本题隐含一个条件,也就是说,说,2m-4与与3m-1也可能是其中的一个平方根,即也可能是其中的一个平方根,即2m-4=3m-1.分析分析结结 束束如何让课堂秩序井然我们可以安静一点吗?(节选)我们可以安静一点吗?(节选)w德国摄影记者在东京旅行,拍下一辑东京地铁挤拥的照德国摄影记者在

44、东京旅行,拍下一辑东京地铁挤拥的照片。许多日本人默默承受挤拥,不论西装笔挺,脸孔压在车片。许多日本人默默承受挤拥,不论西装笔挺,脸孔压在车厢门的玻璃上,鼻扁嘴凸,面容扭曲,就是一副死忍,绝不厢门的玻璃上,鼻扁嘴凸,面容扭曲,就是一副死忍,绝不吭声半句。这个照片系列,成为日本国民性格的代表作。吭声半句。这个照片系列,成为日本国民性格的代表作。w日本人乘搭公共交通工具,不论地铁还是飞机,其恬静日本人乘搭公共交通工具,不论地铁还是飞机,其恬静是一大景观。手机不会响,为他人着想,固不必说,车厢里是一大景观。手机不会响,为他人着想,固不必说,车厢里鲜有交谈,即使有,声音也自觉低下来,令西方记者称奇。鲜有

45、交谈,即使有,声音也自觉低下来,令西方记者称奇。w日本火车与瑞士和欧洲各国的火车类似,就是乘客自觉日本火车与瑞士和欧洲各国的火车类似,就是乘客自觉恬静,读书看报,或者上网工作。这方面,难怪日本早身在恬静,读书看报,或者上网工作。这方面,难怪日本早身在西方文明国家之列,公共交通,首重一个西方文明国家之列,公共交通,首重一个“公公”字,国民无字,国民无公德,国家再强,公德,国家再强,GDP再高,没有人心中真正看得起你。再高,没有人心中真正看得起你。有读有思有读有思静之内涵w文静有礼之仪态文静有礼之仪态w安静宜人之环境安静宜人之环境w平静淡然之心境平静淡然之心境w冷静处事之素养冷静处事之素养优雅安静

46、的大自然能让人心情舒畅万物生存优雅安静的大自然能让人心情舒畅万物生存 大自然之静大自然之静安静祥和的校园能让我们静心思考、学习安静祥和的校园能让我们静心思考、学习人之静人之静w 在教室或者楼道打闹在教室或者楼道打闹w 在厕所相互泼水嬉闹在厕所相互泼水嬉闹w 有事没事把窗帘拉上又拉下有事没事把窗帘拉上又拉下w 上课不认真听讲、讲话上课不认真听讲、讲话w.想一想想一想想一想想一想?想一想想一想想一想想一想?想一想想一想想一想想一想?在我们的校园以及身处的公共场所,有哪在我们的校园以及身处的公共场所,有哪些与些与“静静”的内涵背道而驰的现象?的内涵背道而驰的现象?想一想想一想想一想想一想?想一想想一

47、想想一想想一想?想一想想一想想一想想一想?大家说一说:这些现象有什么危害?大家说一说:这些现象有什么危害?安静是什么安静是什么w 安静是修养。安静是修养。公共场所是公众活动的地方,任何人都不得以任何公共场所是公众活动的地方,任何人都不得以任何理由对其进行任何形式的独占,而应自觉维护该场理由对其进行任何形式的独占,而应自觉维护该场所的秩序,遵守必须的社会公德。所的秩序,遵守必须的社会公德。安静是什么安静是什么w 安静是文化,是文明。安静是文化,是文明。文化可以引领人的发展。到了一个非常安静的场所,文化可以引领人的发展。到了一个非常安静的场所,你忍心一个人制造大的声响来引起别人不必要的注你忍心一个

48、人制造大的声响来引起别人不必要的注意吗?当大家都停下自己的活动看你时,你会感觉意吗?当大家都停下自己的活动看你时,你会感觉到脸红,自觉融入到这安静的氛围之中。学校狠抓到脸红,自觉融入到这安静的氛围之中。学校狠抓安静校园的治理,就是为了建设良好的校园文化,安静校园的治理,就是为了建设良好的校园文化,提高文明水平。提高文明水平。安静是什么安静是什么w 安静是形象。安静是形象。文明程度比较高的国家,所有公共场所都是比较安文明程度比较高的国家,所有公共场所都是比较安静的,对来自其他国的游客的喧哗吵闹感到非常惊静的,对来自其他国的游客的喧哗吵闹感到非常惊诧。如果是黄皮肤、黑头发的游客,就一定认为是诧。如

49、果是黄皮肤、黑头发的游客,就一定认为是中国人,其潜台词就是:中国游客太闹,文明古国中国人,其潜台词就是:中国游客太闹,文明古国来的人,文明程度并不高。这就是形象。来的人,文明程度并不高。这就是形象。安静是什么安静是什么w 保持安静是一种习惯。保持安静是一种习惯。习惯是养成的,除了必要的约束,还需要较长的时习惯是养成的,除了必要的约束,还需要较长的时间。行为养成习惯,习惯形成品质,品质决定人生。间。行为养成习惯,习惯形成品质,品质决定人生。自觉保持公共场所的安静,就是良好的行为,就能形自觉保持公共场所的安静,就是良好的行为,就能形成良好的品质,就会对你的人生起到良好影响。成良好的品质,就会对你的

50、人生起到良好影响。想一想想一想想一想想一想?想一想想一想想一想想一想?想一想想一想想一想想一想?今后我们应该怎样做?今后我们应该怎样做?公共场合,我们应该安静有序地排队等候。公共场合,我们应该安静有序地排队等候。课堂上我们应该静静的倾听,静静的思考课堂上我们应该静静的倾听,静静的思考讨论问题的时候,我们要认真倾听讨论问题的时候,我们要认真倾听别人的意见,有序地发表自己的见解别人的意见,有序地发表自己的见解。到室外或功能室上课前,迅速有序到室外或功能室上课前,迅速有序列队,安静轻步走到上课地点,上下楼列队,安静轻步走到上课地点,上下楼梯靠右行。梯靠右行。让我们读一读让我们读一读w 铃声响铃声响

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(可化为一元一次方程的分式方程(第课时)(优质课)获奖课件-公开课一等奖课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|