1、第二十二章 二次函数小结与复习 要点梳理考点讲练 课堂小结课后作业要点梳理要点梳理 一般地,形如 (a,b,c是常数,_)的函数,叫做二次函数yax2bxca 注意(1)等号右边必须是整式;(2)自变量的最高次数是2;(3)当b0,c0时,yax2是特殊的二次函数1.二次函数的概念二次函数y=a(x-h)2+k yax2bxc开口方向对称轴顶点坐标最值a0a0增减性a0a02.二次函数的图象与性质:a0 开口向上a 0 开口向下x=h(h,k)y最小=ky最大=k在对称轴左边,x y;在对称轴右边,x y 在对称轴左边,x y;在对称轴右边,x y2bxa24(,)24bacbaay最小=24
2、4acbay最大=244acba3.二次函数图像的平移yax22()y a x h左、右平移 左加右减2()ya x hk上、下平移 上加下减y-ax2写成一般形式2yaxbx c沿x轴翻折4.二次函数表达式的求法1一般式法:yax2bxc(a 0)2顶点法:ya(xh)2k(a0)3交点法:ya(xx1)(xx2)(a0)5.二次函数与一元二次方程的关系 二次函数yax2bxc的图象和x轴交点有三种情况:有两个交点,有两个重合的交点,没有交点.当二次函数yax2bxc的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2bxc=0的根.二次函数yax2bxc的图像
3、和x轴交点一元二次方程ax2bxc=0的根一元二次方程ax2bxc=0根的判别式(b2-4ac)有两个交点有两个交点有两个相异的有两个相异的实数根实数根b2-4ac 0有两个重合有两个重合的交点的交点有两个相等的有两个相等的实数根实数根b2-4ac=0没有交点没有交点没有实数根没有实数根b2-4ac 06.二次函数的应用1二次函数的应用包括以下两个方面 (1)用二次函数表示实际问题变量之间的关系,解决最大化问题(即最值问题);(2)利用二次函数的图像求一元二次方程的近似解2一般步骤:(1)找出问题中的变量和常量以及它们之间 的函数关系;(2)列出函数关系式,并确定自变量的取值范围;(3)利用二
4、次函数的图象及性质解决实际问题;(4)检验结果的合理性,是否符合实际意义考点一 求抛物线的顶点、对称轴、最值考点讲练考点讲练例1 抛物线yx22x3的顶点坐标为_【解析】方法一:配方,得yx22x3(x1)22,则顶点坐标为(1,2)方法二代入公式 ,则顶点坐标为(1,2)2122 1bxa2244 1 3 2244 1ac bya (1,2)方法归纳解决此类题目可以先把二次函数yax2bxc配方为顶点式ya(xh)2k的形式,得到:对称轴是直线xh,最值为yk,顶点坐标为(h,k);也可以直接利用公式求解.1对于y2(x3)22的图像下列叙述正确的是()A顶点坐标为(3,2)B对称轴为y3C
5、当x3时,y随x的增大而增大 D当x3时,y随x的增大而减小C针对训练考点二 二次函数的图像与性质及函数值的大小比较例2 二次函数yx2bxc的图像如图所示,若点A(x1,y1),B(x2,y2)在此函数图像上,且x1x21,则y1与y2的大小关系是()A.y1y2 By1y2【解析】由图像看出,抛物线开口向下,对称轴是x1,当x1时,y随x的增大而增大x1x21,y11可得2ab0,故正确;由图像上横坐标为 x2的点在第三象限可得4a2bc0,故正确;由图像上横坐标为x1的点在第四象限得出abc0,由图像上横坐标为x1的点在第二象限得出 abc0,则(abc)(abc)0,即(ac)2b20
6、,可得(ac)2b2,故正确故选D.方法总结1.可根据对称轴的位置确定b的符号:b0对称轴是y轴;a、b同号对称轴在y轴左侧;a、b异号对称轴在y轴右侧.这个规律可简记为“左同右异”.2.当x1时,函数yabc.当图像上横坐标x1的点在x轴上方时,abc0;当图像上横坐标x1的点在x轴上时,abc0;当图像上横坐标x1的点在x轴下方时,abc0.同理,可由图像上横坐标x1的点判断abc的符号.3.已知二次函数y=x22bxc,当x1时,y的值随x值的增大而减小,则实数b的取值范围是()Ab1 Bb1 Cb1 Db1针对训练解析:二次项系数为10,抛物线开口向下,在对称轴右侧,y的值随x值的增大
7、而减小,由题设可知,当x1时,y的值随x值的增大而减小,抛物线y=x22bxc的对称轴应在直线x=1的左侧而抛物线y=x22bxc的对称轴 ,即b1,故选择D.2(1)bxb 考点四 抛物线的几何变换例4 将抛物线yx26x5向上平移 2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是()Ay(x4)26 By(x4)22Cy(x2)22 Dy(x1)23【解析】因为yx26x5(x3)24,所以向上平移2个单位长度,再向右平移1个单位长度后,得到的解析式为y(x31)242,即y (x4)22.故选B.3.若抛物线 y=7(x+4)21平移得到 y=7x2,则可能()A.先向左平移
8、4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向下平移4个单位B针对训练考点五 二次函数表达式的确定例5 已知关于x的二次函数,当x=1时,函数值为10,当x=1时,函数值为4,当x=2时,函数值为7,求这个二次函数的解析式.待定系数法解:设所求的二次函数为yax2+bxc,由题意得:104427abcabcabc解得,a=2,b=3,c=5.所求的二次函数为y2x23x5.5.已知抛物线y=ax2+bx+c与抛物线y=x23x+7的形状相同,顶点在直线x=1上,且顶点到x轴的距离为5,请写出满足此条件
9、的抛物线的表达式.解:抛物线y=ax2+bx+c与抛物线y=x23x+7的形状 相同 a=1或1 又顶点在直线x=1上,且顶点到x轴的距离为5,顶点为(1,5)或(1,5)所以其表达式为:(1)y=(x1)2+5 (2)y=(x1)25 (3)y=(x1)2+5 (4)y=(x1)25 针对训练例6 若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()Ax1=0,x2=6Bx1=1,x2=7Cx1=1,x2=7 Dx1=1,x2=7解析:二次函数y=x2+mx的对称轴是x=3,=3,解得m=6,关于x的方程x2+mx=7可化为x26x7=0,即(x+1)(x7)=0
10、,解得x1=1,x2=7 故选D2m考点六 二次函数与一元二次方程例7某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数ykxb,且x65时,y55;x75时,y45.(1)求一次函数的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?考点七 二次函数的应用解:(1)根据题意,得65557545kbkc解得k=-1,b=120.故所求一次函数的表达式为y=-x+120.(2)W=(x-60)(-x+120)=
11、-x2+180 x-7200=-(x-90)2+900,抛物线的开口向下,当x90时,W随x的增大而增大,而60 x60(1+45%),即60 x87,当x=87时,W有最大值,此时W=-(87-90)2+900=891.11.一家电脑公司推出一款新型电脑,投放市场以来3个月的利润情况如图所示,该图可以近似看作为抛物线的一部分,请结合图象,解答以下问题:(1)求该抛物线对应的二次函数解析式;(2)该公司在经营此款电脑过程中,第几月的利润最大?最大利润是多少?(3)若照此经营下去,请你结合所学的知识,对公司在此款电脑的经营状况(是否亏损?何时亏损?)作预测分析针对训练解:(1)因图象过原点,则设
12、函数解析式为y=ax2+bx,由图象的点的含义,得134224abab解得a=-1,b=14.故所求一次函数的表达式为y=-x2+14x.(2)y=-x2+14x=-(x-7)2+49.即当x=7时,利润最大,y=49(万元)(3)没有利润,即y=-x2+14x=0.解得x1=0(舍去)或x2=14,而这时利润为滑坡状态,所以第15个月,公司亏损.例8如图,梯形ABCD中,ABDC,ABC90,A45,AB30,BCx,其中15x30.作DEAB于点E,将ADE沿直线DE折叠,点A落在F处,DF交BC于点G.(1)用含有x的代数式表示BF的长;(2)设四边形DEBG的面积为S,求S与x的函数关
13、系式;(3)当x为何值时,S有最大值?并求出这个最大值解:(1)由题意,得EF=AE=DE=BC=x,AB=30.BF=2x-30.(2)F=A=45,CBF-=ABC=90,BGF=F=45,BG=BF=2x-30.所以SDEF-SGBF=DE2-BF2=x2-(2x-30)2=x2+60 x-450.1212121232(3)S=x2+60 x-450=(x-20)2+150.a=0,152030,当x=20时,S有最大值,最大值为150.32323212.张大伯准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的
14、羊圈.(1)请你求出张大伯矩形羊圈的面积;(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计?并说明理由.25m针对训练解:(1)由题意,得羊圈的长为25m,宽为(40-25)2=7.5(m).故羊圈的面积为257.5=187.5(m2)(2)设羊圈与墙垂直的一边为xm,则与墙相对的一边长为(40-2x)m,羊圈的面积S=x(40-2x)=-2x2+40 x=-2(x-10)2+200,(0 x20).因为01020,所以当x=10时,S有最大值,此时S=200.故张大伯的设计不合理.羊圈与墙垂直的两边长为10m,而与墙相对的一边长为(40-2x)m=20m.二次函数二次函数的概念二次函数与一元二次方程的联系二次函数的图象与性质课堂小结课堂小结不共线三点确定二次函数的表达式二次函数的应用同学们,下节课见!同学们,加油!