1、八年级(上八年级(上)期末数学试期末数学试卷卷题号一二三四总分得分一、选择题(本大题共 12 小题,共 36.0 分)1.9 的平方根为(A.3)B.3C.3D.32.在实数 0.23,4.21,-2,227,0.3030030003(每两个 3 之间增加 1 个 0)中,无理数的个数是()A.1 个B.2 个C.3 个D.4 个)D.11、12、153.下面各组数中不能构成直角三角形三边长的一组数是(A.3、4、5B.6、8、10C.5、12、13下列等式成立的是()A.(9)2=9B.3(1)3=1C.(2)2=24.D.25=55.在平面直角坐标系中,点 P(-3,1)所在的象限是()A
2、.第一象限B.第二象限C.第三象限D.第四象限 如图,直线 EF 分别交 AB、CD 于点 E、F,EG 平分BEF,ABCD若1=72,则2 的度数为()6.A.54B.59C.72D.108已知:甲乙两组数据的平均数都是 5,甲组数据的方差 S 甲 2=6,乙组数据的方差 S7.)乙 2=22,下列结论中正确的是(A.甲组数据比乙组数据的波动大B.乙组数据比甲组数据的波动大C.甲组数据与乙组数据的波动一样大D.甲乙两组数据的波动大小不能比较等腰三角形周长为 18cm,那么腰长 y 与底边长 x 的函数关系式是(8.)B.y=x+9A.y=2x+18C.y=12x+9D.y=12x+189.
3、下列四个命题中,真命题有()两条直线被第三条直线所截,内错角相等如果1 和2 是对顶角,那么1=2三角形的一个外角大于任何一个内角如果 x20,那么 x0A.1 个B.2 个C.3 个D.4 个10.已知一次函数 y=kx+b 随着 x 的增大而减小,且 kb0,则在直角坐标系内它的大致 图象是()A.B.C.D.11.小敏从 A 地出发向 B 地行走,同时小聪从 B 地出发向 A 地行走,如图,相交于点 P 的两条线段 l1、l2 分别表示小敏、小聪离 B 地的距离 ykm 与已用时间 xh 之间的关 系,则小敏、小聪行走的速度分别是()第 1 页,共 14 页八年级(上)期末数学试卷题号一
4、二三四总分得分一、选择题(本大A.3km/h 和 4km/hB.3km/h 和 3km/hC.4km/h 和 4km/hD.4km/h 和 3km/h12.已知,如图点 A(1,1),B(2,-3),点 P 为 x 轴上一点,当|PA-PB|最大时,点 P 的坐标为()A.(1,0)B.(12,0)C.(54,0)D.(1,0)二、填空题(本大题共 4 小题,共 12.0 分)13.点 P(5,-3)关于 y 轴的对称点 P的坐标是14.将一副直角三角板如图放置,使含 30角的三角板的短直角边和含 45角的三角板 的一条直角边重合,则1 的度数为度15.如图,有一块直角三角形纸片,两直角边 A
5、C=6cm,BC=8cm,现将直角边 AC 沿着直线 AD 折叠,使它落在 斜边 AB 上,且与 AE 重合,则 CD 的长为cm16.如图,直线 l1x 轴于点(1,0),直线 l2x 轴于点(2,0),直线 l3x 轴于点(3,0),直线 lnx 轴于点(n,0)(其中 n 为正整数)函数 y=x 的图象与 直线 l1,l2,l3,ln 分别交于点 A1,A2,A3,An;函数 y=2x 的图象与直线 l1,l2,l3,ln 分别交于点 B1,B2,B3,Bn如果OA1B1 的面积记作 S,四 边形 A1A2B2B1 的面积记作 S1,四边形 A2A3B3B2 的面积记作 S2,四边形 A
6、nAn+1Bn+1Bn 的面积记作 Sn,那么 S2018=第 2 页,共 14 页3 k m/h 和 4 k m/h A.(1,0)B.(1 2,三、计算题(本大题共 1 小题,共 8.0 分)17.解方程(1)y=52x3x+2y=4(2)3x+4y=11x+32y=0四、解答题(本大题共 6 小题,共 44.0 分)18.计算(1)3181232+418+38(2)(5+6)(56)(51)219.某校在八年级开展环保知识问卷调查活动,问卷一共 10 道题,八年级(三)班的 问卷得分情况统计图如下图所示:第 3 页,共 14 页三、计算题(本大题共 1 小题,共 8.0 分)四、解答题(
7、第 4 页,共 14 页1扇形统计图中,a=;2根据以上统计图中的信息,问卷得分的极差是 分,问卷得分的众 数是 分,问卷得分的中位数是分;3请你求出该班同学的平均分20.小明从深圳往广州邮寄一件包裹,邮资收费标准为每干克 0.9 元,并每件另加收手 续费 3.5 元1求总邮资 y(元)与包裹重量 x(干克)之间的函数关系式;2若小明的包裹重量为 5 千克,则小明应付的总邮资为多少?3若小明所付总邮资为 12.5 元,则小明的包裹重量为多少?21.爸爸想送小明一个书包和一辆自行车作为新年礼物,在甲、乙两商场都发现同款的 自行车单价相同,书包单价也相同,自行车和书包单价之和为 452 元,且自行
8、车的 单价比书包的单价 4 倍少 8 元1求自行车和书包单价各为多少元;2新年来临赶上商家促销,乙商场所有商品打八五折(即 8.5 折)销售,甲全 场购物毎满 100 元返购物券 30 元(即不足 100 元不返券,满 100 元送 30 元购物券,满 200 元送 60 元购物券),并可当场用于购物,购物券全场通用 但爸爸只带了 400 元钱,如果他只在同一家商场购买看中的两样物品,在哪一家买更省钱?22.如图 1,直线 MN 与直线 AB、CD 分别交于点 E、F,1 与2 互补1试判断直线 AB 与直线 CD 的位置关系,并说明理由;2如图 2,BEF 与EFD 的角平分线交于点 P,E
9、P 与 CD 交于点 G,点 H 是 MN上一点,且 GHEG,求证:PFGH;3如图 3,在(2)的条件下,连接 PH,K 是 GH 上一点使PHK=HPK,作 PQ平分EPK,问HPQ 的大小是否发生变化?若不变,请求出其值;若变化,说明理由第 4 页,共 1 4 页扇形统计图中,a=;小明从深圳往广23.如图,平面直角坐标系中,直线 AB:y=13x+b 交 y 轴于点 A(0,1),交 x 轴于点 B直线 x=1 交 AB 于点 D,交 x 轴于点 E,P 是直线 x=1 上一动 点,且在点 D 的上方,设 P(1,n)1求直线 AB 的解析式和点 B 的坐标;2求ABP 的面积(用含
10、 n 的代数式表示);3当 SABP=2 时,以 PB 为边在第一象限作等 腰直角三角形 BPC,求出点 C 的坐标第 5 页,共 14 页如图,平面直角坐标系中,直线 A B:y=1 3 x+b 交 答案和解答案和解析析1.【答案】C【解析】解:9 的平方根有:故选:C=3根据平方根的定义求解即可,注意一个正数的平方根有两个此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平 方根有两个,且互为相反数2.【答案】C【解析】,0.3030030003(每两个 3 之间增加 1解:在所列的实数中,无理数有,-个 0)这 3 个,故选:C无理数就是无限不循环小数理解无理数的概念,一定
11、要同时理解有理数的 概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2 等;开 方开不尽的数;以及像 0.1010010001,等有这样规律的数3.【答案】D【解析】解:A、32+42=52,能构成直角三角形;B、62+82=102,能构成直角三角形;C、52+122=132,能构成直角三角形;D、112+122152,不能构成直角三角形 故选:D判断能否构成直角三角形,只需验证两小边的平方和是否等于最长边的平方 此题主要考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理
12、,若三角形 ABC 的三边满足 a2+b2=c2,则三角形 ABC 是直角三角形4.【答案】B【解析】解:A=9,此选项错误;B,此选项正确;C(-)2=2,此选项错误;D=5,此选项错误;故选:B根据算术平方根和立方根的定义求解可得本题主要考查立方根和算术平方根,解题的关键是掌握算术平方根和立方根 的定义第 6 页,共 14 页答案和解析1.【答案】C=3 根据平方根的定义求解即可,注5.【答案】B【解析】解:-30,10,点 P(-3,1)所在的象限是第二象限,故选:B根据点的横纵坐标的符号可得所在象限考查点的坐标的相关知识;掌握各个象限内点的符号特点是解决本题的关键6.【答案】A【解析】
13、解:ABCD,BEF=180-1=180-72=108,2=BEG,又EG 平分BEF,BEG=BEF=108=54,2=BEG=54 故选:A依据两直线平行,同旁内角互补,可求出FEB,再根据角平分线可得到BEG,然后用两直线平行,内错角相等求出2 即可本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等7.【答案】B【解析】解:甲组数据的方差=,乙组数据的方差 S 乙 2=2,S 乙 2,乙组数据比甲组数据的波动大;故选:B根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差 越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数 据越稳定本题考查方差的
14、意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定8.【答案】C【解析】解:等腰三角形周长为 8cm,腰长为 ycm,底边为 xcm,y=(18-x)=9-x;故选:C利用周长减去底边长 x,再除以 2 可得腰长 y 与底边长 x 的函数关系式 本题考查了等腰三角形的性质,以及根据实际问题列函数关系式,关键是掌 握等腰三角形两腰相等9.【答案】A【解析】解:两条平行直线被第三条直线所截,内错角相等,所以错误;如果1 和2 是对顶角,那么1=2,所以正确;第
15、 7 页,共 14 页【答案】B 第 7 页,共 1 4 页三角形的一个外角大于任何一个不相邻的内角,所以错误;如果 x20,那么 x0,所以错误 故选:A根据平行线的性质对进行判断;根据对顶角的性质对进行判断;根据三角形外角性质对进行判断;根据非负数的性质对进行判断本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题 设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一 个命题可以写成“如果那么”形式;有些命题的正确性是用推理证实的,这 样的真命题叫做定理10.【答案】A【解析】解:一次函数随着 x 的增大而减小,k0kb0,b0,函数图象经过一二四象限 故选:A
16、先根据一次函数的增减性判断出k 的符号,再由 kb0 判断出b 的符号,进而 可得出结论本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键11.【答案】D【解析】【分析】观察函数图象得到小敏、小聪相遇时,小聪走了 4.8 千米,接着小敏再用 2.8小时-1.6 小时=1.2 小时到达 B 点,然后根据速度公式计算他们的速度本题考查了函数的图象:对于一个函数,如果把自变量与函数的每一对对应值 分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函 数的图象函数图形上的任意点(x,y)都满足其函数的解析式;满足解析式的 任意一对 x、y 的值,所对应的点一定在函
17、数图象上;判断点 P(x,y)是否在 函数图象上的方法是:将点 P(x,y)的 x、y 的值代入函数的解析式,若能满足 函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点 就不在函数的图象上【解答】解:小敏从相遇到 B 点用了 2.8-1.6=1.2 小时,所以小敏的速度=4(千米/时),小聪从 B 点到相遇用了 1.6 小时,所以小聪的速度=3(千米/时)故选 D12.【答案】B【解析】第 8 页,共 14 页三角形的一个外角大于任何一个不相邻的内角,所以错误;第 8解:作 A 关于 x 轴对称点 C,连接 BC 并延长交 x 轴于点 P,A(1,1),C 的坐标为(1,-
18、1),连接 BC,设直线 BC 的解析式为:y=kx+b,解得:,直线 BC 的解析式为:y=-2x+1,当 y=0 时,x=,点 P 的坐标为:(,0),当 B,C,P 不共线时,根据三角形三边的关系可得:|PA-PB|=|PC-PB|BC,此时|PA-PB|=|PC-PB|=BC 取得最大值 故选:B作 A 关于 x 轴对称点 C,连接 BC 并延长,BC 的延长线与 x 轴的交点即为所 求的 P 点;首先利用待定系数法即可求得直线 BC 的解析式,继而求得点 P 的 坐标此题考查了轴对称、待定系数法求一次函数的解析式以及点与一次函数的关 系此题难度较大,解题的关键是找到 P 点,注意数形
19、结合思想与方程思想的 应用13.【答案】(-5,-3)【解析】解:点 P(5,-3)关于 y 轴的对称点 P的坐标是:(-5,-3)故答案为:(-5,-3)直接利用关于 y 轴对称点的特点得出答案此题主要考查了关于 y 轴对称点的特点,正确记忆横纵坐标的关系是解题关键14.【答案】75【解析】解:如图3=60,4=45,1=5=180-3-4=75故答案为:75根据三角形三内角之和 等于 180求解考查三角形内角之和等于 180 15.【答案】3【解析】解:由勾股定理得,AB=10由折叠的性质知,AE=AC=6,DE=CD,AED=C=90BE=AB-AE=10-6=4,在 RtBDE 中,由
20、勾股定理得,第 9 页,共 14 页解:作 A 关于 x 轴对称点 C,连接 B C 并延长第 9DE2+BE2=BD2即 CD2+42=(8-CD)2,解得:CD=3cm由折叠的性质知 CD=DE,AC=AE根据题意在 RtBDE 中运用勾股定理求 DE本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对 称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相 等;2、勾股定理求解16.【答案】2017.5【解析】解:根据题意,An-1Bn-1=2(n-1)-(n-1)=2n-2-n+1=n-1,AnBn=2n-n=n,直线 ln-1x 轴于点(n-1,0),直
21、线 lnx 轴于点(n,0),An-1Bn-1AnBn,且 ln-1 与 ln 间的距离为 1,四边形 An-1AnBnBn-1 是梯形,Sn=(n-1+n)1=(2n-1),当 n=2018 时,S2018=(22018-1)=2017.5故答案为 2017.5根据直线解析式求出 An-1Bn-1,AnBn 的值,再根据直线 ln-1 与直线 ln 互相平行并判断出四边形An-1AnBnBn-1 是梯形,然后根据梯形的面积公式求出Sn的 表达式,然后把 n=2018 代入表达式进行计算即可得解本题考查的是一次函数图象上点的坐标特点,规律型:图形的变化类,读懂题意,根据直线解析式求出 An-1
22、Bn-1,AnBn 的值是解题的关键,要注意脚码的对应关系,这也是本题最容易出错的地方,17.【答案】解:(1)把代入得:3x+10-4x=4,解得:x=6,把 x=6 代入得:y=-7,则方程组的解为 x=6y=7;(2)方程组整理得:3x+4y=11y=x+32,把代入得:3x+2x+6=11,解得:x=1,把 x=1 代入得:y=2,则方程组的解为 x=1y=2【解析】第 10 页,共 14 页D E 2+B E 2=B D 2,1 7.【答案】解:(1)第 1 0 页1方程组利用代入消元法求出解即可;2方程组整理后,利用加减消元法求出解即可此题考查了解二元一次方程组,利用了消元的思想,
23、消元的方法有:代入消元 法与加减消元法18.【答案】解:(1)3181232+418+38=332-1242+424-2=92-22+2-2=82-2;(2)(5+6)(56)(51)2=5-6-(5+1-25)=-1-6+25=-7+25【解析】1直接化简二次根式进而合并得出答案;2直接利用乘法公式计算得出答案此题主要考查了实数运算,正确化简二次根式是解题关键40 90 8519.【答案】14%【解析】解:(1)a=1-20%-30%-20%-16%=14%;故答案为:14%;(2)问卷得分的极差是 100-60=40(分),90 分所占的比例最大,故问卷得分的众数是 90 分,问卷得分的中
24、位数是=85(分);故答案为:40;90;85;(3)该班同学的平均分为:6014%+7016%+8020%+9030%+10020%=82.6(分)1依据扇形统计图中各项目的百分比,即可得到 a 的值;2依据极差、众数和中位数的定义进行计算,即可得到答案;3依据加权平均数的算法进行计算,即可得到该班同学的平均分本题考查了扇形统计图、条形统计图、众数和中位数的应用,解题时注意:将 一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则 处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中 间两个数据的平均数就是这组数据的中位数20.【答案】解:(1)依题意得:y
25、=0.9x+3.5(2)把 x=5 代入 y=0.9x+3.5,得 y=0.95+3.5=8(元)答:若小明的包裹重量为 5 千克,则小明应付的总邮资为 8 元(3)把 y=12.5 代入 y=0.9x+3.5,得 12.5=0.9x+3.5,解得 x=10答:若小明所付总邮资为 12.5 元,则小明的包裹重量为 10 千克【解析】(1)根据总邮资 y(元)=0.9x+3.5 列出函数解析式;第 11 页,共 14 页方程组利用代入消元法求出解即可;4 0 9 0 8 5 1 9.【答案2将 x=5 代入(1)中的函数解析式即可求得相应的 y 值;3将 y=12.5 代入(1)中的函数解析式即
26、可求得相应的 x 的值此题为一次函数的应用,渗透了函数与方程的思想,难度不是很大,属于中 档题21.【答案】解:(1)设自行车的单价为 x 元/辆,书包的单价为 y 元/个,根据题意得:x+y=4524yx=8,解得:x=360y=92答:自行车的单价为 360 元/辆,书包的单价为 92 元/个(2)在甲商店购买所需费用为:360+92-303=362(元),在乙商店购买所需费用为:4520.85=384.2(元)362384.2,在甲商店购买更省钱【解析】1设自行车的单价为 x 元/辆,书包的单价为 y 元/个,根据“自行车和书包单 价之和为452 元,且自行车的单价比书包的单价4 倍少8
27、 元”,即可得出关于x,y 的二元一次方程组,解之即可得出结论;2根据甲、乙两商店的优惠政策分别求出在两商店购买所需费用,比较后即 可得出结论本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确 列出二元一次方程组;(2)根据甲、乙两商店的优惠政策分别求出在两商店购 买所需费用22.【答案】解:(1)如图 1,1 与2 互补,1+2=180又1=AEF,2=CFE,AEF+CFE=180,ABCD;2如图 2,由(1)知,ABCD,BEF+EFD=180又BEF 与EFD 的角平分线交于点 P,FEP+EFP=12(BEF+EFD)=90,EPF=90,即 EGPFGHEG,
28、PFGH;3HPQ 的大小不发生变化,理由如下:如图 3,1=2,第 12 页,共 14 页将 x=5 代入(1)中的函数解析式即可求得相应的 y 值;3=22 又GHEG,4=90-3=90-22EPK=180-4=90+22PQ 平分EPK,QPK=12EPK=45+2HPQ=QPK-2=45,HPQ 的大小不发生变化,一直是 45【解析】1利用对顶角相等、等量代换可以推知同旁内角AEF、CFE 互补,所以易证 ABCD;2利用(1)中平行线的性质推知;然后根据角平分线的性质、三角形内角和 定理证得EPF=90,即 EGPF,故结合已知条件 GHEG,易证 PFGH;3利用三角形外角定理、
29、三角形内角和定理求得4=90-3=90-22;然后由邻补角的定义、角平分线的定义推知QPK=EPK=45+2;最后根据图形中的角与角间的和差关系求得HPQ 的大小不变,是定值 45本题考查了平行线的判定与性质解题过程中,注意“数形结合”数学思想的运 用23.【答案】解:(1)y=13x+b 经过 A(0,1),b=1,直线 AB 的解析式是 y=13x+1 当 y=0 时,0=13x+1,解得 x=3,点 B(3,0)(2)过点 A 作 AMPD,垂足为 M,则有 AM=1,x=1时,y=13x+1=23,P 在点 D 的上方,PD=n-23,SAPD=12PDAM=121(n23)=12n1
30、3由点 B(3,0),可知点 B 到直线 x=1 的距离为 2,即BDP 的边 PD 上的高长为 2,SBPD=12PD2=n23,SPAB=SAPD+SBPD=12n13+n23=32n1;(3)当 SABP=2 时,32n1=2,解得 n=2,点 P(1,2)E(1,0),PE=BE=2,EPB=EBP=45第 1 种情况,如图 1,CPB=90,BP=PC,过点 C 作 CN直线 x=1 于点 NCPB=90,EPB=45,NPC=EPB=45又CNP=PEB=90,BP=PC,CNPBEP,PN=NC=EB=PE=2,NE=NP+PE=2+2=4,第 13 页,共 14 页3=2 2
31、又G H E G,第 1 3 页,共 1 4 C(3,4)第 2 种情况,如图 2PBC=90,BP=BC,过点 C 作 CFx 轴于点 FPBC=90,EBP=45,CBF=PBE=45又CFB=PEB=90,BC=BP,CBFPBEBF=CF=PE=EB=2,OF=OB+BF=3+2=5,C(5,2)第 3 种情况,如图 3,PCB=90,CP=EB,CPB=EBP=45,在PCB 和PEB 中,CP=EBCPB=EBPBP=BPPCBPEB(SAS),PC=CB=PE=EB=2,C(3,2)以 PB 为边在第一象限作等腰直角三角形 BPC,点 C的坐标是(3,4)或(5,2)或(3,2)【解析】1把 A 的坐标代入直线 AB 的解析式,即可求得 b 的值,然后在解析式中,令 y=0,求得 x 的值,即可求得 B 的坐标;2过点 A 作 AMPD,垂足为 M,求得 AM 的长,即可求得BPD 和PAB 的面积,二者的和即可求得;3当SABP=2 时,解得 n=2,则OBP=45,然后分 A、B、P 分别是直角顶点求解本题是待定系数法求函数的解析式,以及等腰直角三角形的性质的综合应用,正确求得 n 的值,判断OBP=45是关键第 14 页,共 14 页C(3,4)第 1 4 页,共 1 4 页