2019年普通高等学校招生全国统一考试理科数学(全国卷Ⅲ).docx

上传人(卖家):四川天地人教育 文档编号:3762494 上传时间:2022-10-10 格式:DOCX 页数:12 大小:286.96KB
下载 相关 举报
2019年普通高等学校招生全国统一考试理科数学(全国卷Ⅲ).docx_第1页
第1页 / 共12页
2019年普通高等学校招生全国统一考试理科数学(全国卷Ⅲ).docx_第2页
第2页 / 共12页
2019年普通高等学校招生全国统一考试理科数学(全国卷Ⅲ).docx_第3页
第3页 / 共12页
2019年普通高等学校招生全国统一考试理科数学(全国卷Ⅲ).docx_第4页
第4页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、绝密 启用前2019年普通高等学校招生全国统一考试数学(全国卷,理)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(2019全国,理1)已知集合A=-1,0,1,2,B=x|x21,则AB=() A.-1,0,1B.0,1C.-1,1D.0,1,2解析A=-1,0,1,2,B=x|-1x1,则AB=-1,0,1.故选A.答案A2.(2019全国,理2)若z(1+i)=2i,则z=()A.-1-iB.-1+iC.1-iD.1+i解析z=2i1+i=2i(1-i)(1+i)(1-i)=2+2i2=1+i.故选D.答案D3.(2019全国,

2、理3)西游记三国演义水浒传和红楼梦是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过西游记或红楼梦的学生共有90位,阅读过红楼梦的学生共有80位.阅读过西游记且阅读过红楼梦的学生共有60位,则该校阅读过西游记的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.8解析由题意得,阅读过西游记的学生人数为90-80+60=70,则该校阅读过西游记的学生人数与该校学生总数比值的估计值为70100=0.7.故选C.答案C4.(2019全国,理4)(1+2x2)(1+x)4的展开式中x3的系数为()A.12

3、B.16C.20D.24解析(1+2x2)(1+x)4的展开式中x3的系数为C43+2C41=4+8=12.故选A.答案A5.(2019全国,理5)已知各项均为正数的等比数列an的前4项和为15,且a5=3a3+4a1,则a3=()A.16B.8C.4D.2解析设等比数列an的公比为q(q0),则a1(1-q4)1-q=15,a1q4=3a1q2+4a1,解得a1=1,q=2,所以a3=a1q2=122=4.故选C.答案C6.(2019全国,理6)已知曲线y=aex+xln x在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=-1B.a=e,b=1C.a=e-1,b=1D.a=

4、e-1,b=-1解析y=aex+ln x+1,k=y|x=1=ae+1=2,ae=1,a=e-1.将点(1,1)代入y=2x+b,得2+b=1,b=-1.答案D7.(2019全国,理7)函数y=2x32x+2-x在-6,6的图像大致为()解析设y=f(x)=2x32x+2-x,则f(-x)=2(-x)32-x+2x=-2x32x+2-x=-f(x),故f(x)是奇函数,图像关于原点对称,排除选项C.f(4)=24324+2-40,排除选项D.f(6)=26326+2-67,排除选项A.故选B.答案B8.(2019全国,理8)如图,点N为正方形ABCD的中心,ECD为正三角形,平面ECD平面AB

5、CD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BMEN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BMEN,且直线BM,EN是异面直线解析如图,连接BD,BE.在BDE中,N为BD的中点,M为DE的中点,BM,EN是相交直线,排除选项C、D.作EOCD于点O,连接ON.作MFOD于点F,连接BF.平面CDE平面ABCD,平面CDE平面ABCD=CD,EOCD,EO平面CDE,EO平面ABCD.同理,MF平面ABCD.MFB与EON均为直角三角形.设正方形ABCD的边长为2,易知EO=3,ON=1,MF=32,BF=22+94=52,

6、则EN=3+1=2,BM=34+254=7,BMEN.故选B.答案B9.(2019全国,理9)执行下边的程序框图,如果输入的为0.01,则输出s的值等于()A.2-124B.2-125C.2-126D.2-127解析x=1,s=0,s=0+1,x=120.01,s=0+1+12,x=140.01,s=0+1+12+126,x=127f(2-32)f(2-23)B.flog314f(2-23)f(2-32)C.f(2-32)f(2-23)flog314D.f(2-23)f(2-32)flog314解析f(x)是R上的偶函数,flog314=f(-log34)=f(log34).又y=2x在R上单

7、调递增,log341=202-232-32.又f(x)在区间(0,+)内单调递减,f(log34)f(2-23)f(2-23)flog314.故选C.答案C12.(2019全国,理12)设函数f(x)=sinx+5(0),已知f(x)在0,2有且仅有5个零点,下述四个结论:f(x)在(0,2)有且仅有3个极大值点f(x)在(0,2)有且仅有2个极小值点f(x)在0,10单调递增的取值范围是125,2910其中所有正确结论的编号是()A.B.C.D.解析f(x)=sinx+5(0)在区间0,2上有且仅有5个零点,52+56,解得1252910,故正确.画出f(x)的图像(图略),由图易知正确,不

8、正确.当0x10时,5x+510+5,又1252910,10+529100+20100=491002,正确.综上可知正确.故选D.答案D二、填空题:本题共4小题,每小题5分,共20分。13.(2019全国,理13)已知a,b为单位向量,且ab=0,若c=2a-5b,则cos=.解析a,b为单位向量,|a|=|b|=1.又ab=0,c=2a-5b,|c|2=4|a|2+5|b|2-45ab=9,|c|=3.又ac=2|a|2-5ab=2,cos=ac|a|c|=213=23.答案2314.(2019全国,理14)记Sn为等差数列an的前n项和.若a10,a2=3a1,则S10S5=.解析设等差数

9、列an的公差为d.a10,a2=3a1,a1+d=3a1,即d=2a1.S10S5=10a1+1092d5a1+542d=100a125a1=4.答案415.(2019全国,理15)设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限.若MF1F2为等腰三角形,则M的坐标为.解析a2=36,b2=20,c2=a2-b2=16,c=4.由题意得,|MF1|=|F1F2|=2c=8.|MF1|+|MF2|=2a=12,|MF2|=4.设点M的坐标为(x0,y0)(x00,y00),则SMF1F2=12|F1F2|y0=4y0.又SMF1F2=12482-22=415,4

10、y0=415,解得y0=15.又点M在椭圆C上,x0236+(15)220=1,解得x0=3或x0=-3(舍去).点M的坐标为(3,15).答案(3,15)16.(2019全国,理16)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9 g/cm3.不考虑打印损耗,制作该模型所需原料的质量为g.解析由题意得,四棱锥O-EFGH的底面积为46-41223=12(cm2),点O到平面BB1C1C的

11、距离为3 cm,则此四棱锥的体积为V1=13123=12(cm3).又长方体ABCD-A1B1C1D1的体积为V2=466=144(cm3),则该模型的体积为V=V2-V1=144-12=132(cm3).故其质量为0.9132=118.8(g).答案118.8三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)(2019全国,理17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离

12、子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:甲离子残留百分比直方图乙离子残留百分比直方图记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为20.1

13、5+30.20+40.30+50.20+60.10+70.05=4.05.乙离子残留百分比的平均值的估计值为30.05+40.10+50.15+60.35+70.20+80.15=6.00.18.(12分)(2019全国,理18)ABC的内角A,B,C的对边分别为a,b,c.已知asinA+C2=bsin A.(1)求B;(2)若ABC为锐角三角形,且c=1,求ABC面积的取值范围.解(1)由题设及正弦定理得sin AsinA+C2=sin Bsin A.因为sin A0,所以sinA+C2=sin B.由A+B+C=180,可得sinA+C2=cosB2,故cosB2=2sinB2cosB2

14、.因为cosB20,故sinB2=12,因此B=60.(2)由题设及(1)知ABC的面积SABC=34a.由正弦定理得a=csinAsinC=sin(120-C)sinC=32tanC+12.由于ABC为锐角三角形,故0A90,0C90.由(1)知A+C=120,所以30C90,故12a2,从而38SABC32.因此,ABC面积的取值范围是38,32.19.(12分)(2019全国,理19)图1是由矩形ADEB,RtABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,FBC=60.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点

15、共面,且平面ABC平面BCGE;(2)求图2中的二面角B-CG-A的大小.(1)证明由已知得ADBE,CGBE,所以ADCG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得ABBE,ABBC,故AB平面BCGE.又因为AB平面ABC,所以平面ABC平面BCGE.(2)解作EHBC,垂足为H.因为EH平面BCGE,平面BCGE平面ABC,所以EH平面ABC.由已知,菱形BCGE的边长为2,EBC=60,可求得BH=1,EH=3.以H为坐标原点,HC的方向为x轴的正方向,建立如图所示的空间直角坐标系H-xyz,则A(-1,1,0),C(1,0,0),G(2,0,3),CG=(1,0

16、,3),AC=(2,-1,0).设平面ACGD的法向量为n=(x,y,z),则CGn=0,ACn=0,即x+3z=0,2x-y=0.所以可取n=(3,6,-3).又平面BCGE的法向量可取为m=(0,1,0),所以cos=nm|n|m|=32.因此二面角B-CG-A的大小为30.20.(12分)(2019全国,理20)已知函数f(x)=2x3-ax2+b.(1)讨论f(x)的单调性;(2)是否存在a,b,使得f(x)在区间0,1的最小值为-1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.解(1)f(x)=6x2-2ax=2x(3x-a).令f(x)=0,得x=0或x=a3.若a

17、0,则当x(-,0)a3,+时,f(x)0;当x0,a3时,f(x)0.故f(x)在(-,0),a3,+单调递增,在0,a3单调递减;若a=0,f(x)在(-,+)单调递增;若a0;当xa3,0时,f(x)0.故f(x)在-,a3,(0,+)单调递增,在a3,0单调递减.(2)满足题设条件的a,b存在.()当a0时,由(1)知,f(x)在0,1单调递增,所以f(x)在区间0,1的最小值为f(0)=b,最大值为f(1)=2-a+b.此时a,b满足题设条件当且仅当b=-1,2-a+b=1,即a=0,b=-1.()当a3时,由(1)知,f(x)在0,1单调递减,所以f(x)在区间0,1的最大值为f(

18、0)=b,最小值为f(1)=2-a+b.此时a,b满足题设条件当且仅当2-a+b=-1,b=1,即a=4,b=1.()当0a3时,由(1)知,f(x)在0,1的最小值为fa3=-a327+b,最大值为b或2-a+b.若-a327+b=-1,b=1,则a=332,与0a3矛盾.若-a327+b=-1,2-a+b=1,则a=33或a=-33或a=0,与0a3矛盾.综上,当且仅当a=0,b=-1或a=4,b=1时,f(x)在0,1的最小值为-1,最大值为1.21.(12分)(2019全国,理21)已知曲线C:y=x22,D为直线y=-12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直

19、线AB过定点;(2)若以E0,52为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.(1)证明设Dt,-12,A(x1,y1),则x12=2y1.由于y=x,所以切线DA的斜率为x1,故y1+12x1-t=x1.整理得2tx1-2y1+1=0.设B(x2,y2),同理可得2tx2-2y2+1=0.故直线AB的方程为2tx-2y+1=0.所以直线AB过定点0,12.(2)解由(1)得直线AB的方程为y=tx+12.由y=tx+12,y=x22可得x2-2tx-1=0.于是x1+x2=2t,x1x2=-1,y1+y2=t(x1+x2)+1=2t2+1,|AB|=1+t2|x

20、1-x2|=1+t2(x1+x2)2-4x1x2=2(t2+1).设d1,d2分别为点D,E到直线AB的距离,则d1=t2+1,d2=2t2+1.因此,四边形ADBE的面积S=12|AB|(d1+d2)=(t2+3)t2+1.设M为线段AB的中点,则Mt,t2+12.由于EMAB,而EM=(t,t2-2),AB与向量(1,t)平行,所以t+(t2-2)t=0.解得t=0或t=1.当t=0时,S=3;当t=1时,S=42.因此,四边形ADBE的面积为3或42.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.(10分)(2019全国,理22)选修

21、44:坐标系与参数方程如图,在极坐标系Ox中,A(2,0),B2,4,C2,34,D(2,),弧AB,BC,CD所在圆的圆心分别是(1,0),1,2,(1,),曲线M1是弧AB,曲线M2是弧BC,曲线M3是弧CD.(1)分别写出M1,M2,M3的极坐标方程;(2)曲线M由M1,M2,M3构成,若点P在M上,且|OP|=3,求P的极坐标.解(1)由题设可得,弧AB,BC,CD所在圆的极坐标方程分别为=2cos ,=2sin ,=-2cos .所以M1的极坐标方程为=2cos 04,M2的极坐标方程为=2sin 434,M3的极坐标方程为=-2cos 34.(2)设P(,),由题设及(1)知若04

22、,则2cos =3,解得=6;若434,则2sin =3,解得=3或=23;若34,则-2cos =3,解得=56.综上,P的极坐标为3,6或3,3或3,23或3,56.23.(10分)(2019全国,理23)选修45:不等式选讲设x,y,zR,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)213成立,证明:a-3或a-1.(1)解由于(x-1)+(y+1)+(z+1)2=(x-1)2+(y+1)2+(z+1)2+2(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)3(x-1)2+(y+1)2+(z+1)

23、2,故由已知得(x-1)2+(y+1)2+(z+1)243,当且仅当x=53,y=-13,z=-13时等号成立.所以(x-1)2+(y+1)2+(z+1)2的最小值为43.(2)证明由于(x-2)+(y-1)+(z-a)2=(x-2)2+(y-1)2+(z-a)2+2(x-2)(y-1)+(y-1)(z-a)+(z-a)(x-2)3(x-2)2+(y-1)2+(z-a)2,故由已知得(x-2)2+(y-1)2+(z-a)2(2+a)23,当且仅当x=4-a3,y=1-a3,z=2a-23时等号成立.因此(x-2)2+(y-1)2+(z-a)2的最小值为(2+a)23.由题设知(2+a)2313,解得a-3或a-1.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 历年真题
版权提示 | 免责声明

1,本文(2019年普通高等学校招生全国统一考试理科数学(全国卷Ⅲ).docx)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|