1、(下)(下)第第1111章章 集成逻辑门电路和组合逻辑电路集成逻辑门电路和组合逻辑电路返回返回第第1111章章 集成逻辑门电路和组合逻辑电路集成逻辑门电路和组合逻辑电路返回返回后一页后一页返回返回前一页前一页 后一页后一页 逻辑代数(逻辑代数(又称布尔代数又称布尔代数),它是分析和),它是分析和设计逻辑电路的数学工具。设计逻辑电路的数学工具。虽然它和普通代虽然它和普通代数一样也用字母表示变量,数一样也用字母表示变量,但变量的取值只但变量的取值只有有“0”,“1”两种,分别称为逻辑两种,分别称为逻辑“0”和逻辑和逻辑“1”。这里这里“0”和和“1”并不表示数量的并不表示数量的大小,大小,而是表示
2、两种相互对立的逻辑状态。而是表示两种相互对立的逻辑状态。逻辑代数所表示的是逻辑代数所表示的是逻辑关系逻辑关系,而不,而不是是数量关系数量关系。这是它与普通代数的本质。这是它与普通代数的本质区别。区别。前一页前一页 后一页后一页返回返回前一页前一页 后一页后一页普通代数普通代数不适用!不适用!结合律结合律(A+B)+C=A+(B+C)(A B)C=A (B C).返回返回A BBAA+BA B.A B.A+B0001101111100100前一页前一页 后一页后一页CBABCAAA BCB)A(CA BCB)CA(1 BCA A+1=1 A A=A.证证:(A+B)(A+C).A+(B C)=(
3、A+B)(A+C).反演律反演律A+B=A B.A B=A+B.1100000011111100列真值表证明:列真值表证明:返回返回(1)A+AB=A (2)A(A+B)=A前一页前一页 后一页后一页证明证明:BA)AA(BA 例如例如:DEBCADEBCAA(3)A(A+B)=AB(4)A+AB=A+BA+A=1A+AB=ABAABABAA 被吸收被吸收返回返回(5)AB+AB=A(6)(A+B)(A+B)=A.11.2.2 逻辑函数的表示方法逻辑函数的表示方法一、逻辑函数表达式的基本形式一、逻辑函数表达式的基本形式前一页前一页 后一页后一页返回返回1、“积之和积之和”(与或)表达(与或)表
4、达式式表达式中包含若干个表达式中包含若干个“积积”项,每个项,每个“积积”项中可有一个或多项中可有一个或多个变量以原变量或反变量的形式出现的字母,所有个变量以原变量或反变量的形式出现的字母,所有“积积”的的“和和”表示一个函数。如:表示一个函数。如:2、“和之积和之积”(或与)表达(或与)表达式式表达式中包含若干个表达式中包含若干个“和和”项,每个项,每个“和和”项中可有一个或多项中可有一个或多个变量以原变量或反变量的形式出现的字母,所有个变量以原变量或反变量的形式出现的字母,所有“和和”的的“积积”表示一个函数。如:表示一个函数。如:CBACAAF)(CBBAF3、一般表达式、一般表达式如:
5、如:)(CBCBAF一般表达式可转换成一般表达式可转换成“与或与或”表达式或者表达式或者“或与或与”表达式。表达式。)(CBCBAFCBACABCCBBCBACAB)(CBCBAF)()(CBCABA最小项之和最小项之和 在一个积项中,每个变量均以原变量或反变量的形式出现在一个积项中,每个变量均以原变量或反变量的形式出现且只出现一次,则这个积项称为且只出现一次,则这个积项称为最小项最小项。积项中的原变量记为。积项中的原变量记为1,反变量记为,反变量记为0。二、逻辑函数表达式的标准形式二、逻辑函数表达式的标准形式n个变量则有个变量则有2n个最小项个最小项以三个变量为例,则有以三个变量为例,则有8
6、个最小项,个最小项,编号编号如下表:如下表:最小项最小项编编 号号m0m1m2m3m4m5m6m7CBACBABCACBACBACBACABABC最小项的性质:在输入变量的一组取值下有且只有一组最小项取值为1;任意两个最小项之积为0;全体最小项之和为1。CBACABCBCBAF )()()()(AABCBBACCCABABCBCABACACBCABABC 3567 mmmmBCACBACABABC 上述表达式可简写为:上述表达式可简写为:)7653()(、mCBAL逻辑函数的最小项表达式逻辑函数的最小项表达式任何表达式都可转换成最小项之和的形式。任何表达式都可转换成最小项之和的形式。11.2.
7、3 逻辑函数的化简逻辑函数的化简 利用上述逻辑代数的基本公式,可对某些利用上述逻辑代数的基本公式,可对某些逻辑关系式进行运算和简化,逻辑关系式进行运算和简化,则可使用较少的则可使用较少的逻辑门实现同样的逻辑功能。逻辑门实现同样的逻辑功能。从而可节省器件,从而可节省器件,降低成本,提高电路工作的可靠性。降低成本,提高电路工作的可靠性。前一页前一页 后一页后一页=AB(C+C)+AB=AB+AB=B返回返回例例1:ABCABC+化简化简 Y=AB 吸收吸收例例3:化简化简CBACBAY CBCBAY )(CBCBA CBA A B=A+B.BABAA 前一页前一页 后一页后一页例例2:证明:证明:
8、AB+AC+BC=AB+ACAB+AC+(A+A)BC吸收吸收吸收吸收=AB+AC左边左边=AB+ABC+AC+ACB=返回返回 组合逻辑电路:任何时刻电路的输出状组合逻辑电路:任何时刻电路的输出状态只取决于该时刻的输入状态,而与该时刻态只取决于该时刻的输入状态,而与该时刻以前的电路状态无关。以前的电路状态无关。组合逻辑电路框图组合逻辑电路框图X1XnX2Y2Y1Yn.组合逻辑电路组合逻辑电路输入输入输出输出前一页前一页 后一页后一页返回返回 1.由逻辑图写出输出端的逻辑表达式由逻辑图写出输出端的逻辑表达式2.运用逻辑代数化简或变换运用逻辑代数化简或变换3.列真值表列真值表4.分析逻辑功能分析
9、逻辑功能已知逻辑电路已知逻辑电路确定确定逻辑功能逻辑功能分析步骤:分析步骤:前一页前一页 后一页后一页返回返回Y1.AB。&YY3Y2.例例 1:分析下图的逻辑功能:分析下图的逻辑功能 1.写出逻辑表达式写出逻辑表达式Y=Y2 Y3=A AB B AB.A B.A B.A.A B.B前一页前一页 后一页后一页返回返回2.应用逻辑代数化简应用逻辑代数化简Y=A AB B AB.=A AB+B AB.=AB+AB反演律反演律 =A (A+B)+B (A+B).反演律反演律前一页前一页 后一页后一页 =A AB+B AB.返回返回 3.列真值表列真值表001 100111001 4.分析逻辑功能分析
10、逻辑功能 输入输入相同相同输出为输出为“0”,输入,输入相异相异输出为输出为“1”,称为称为“异或异或”逻辑关系。这种电路称逻辑关系。这种电路称“异或异或”门门。Y=AB+AB=A B逻辑式逻辑式=1ABY逻辑符号逻辑符号前一页前一页 后一页后一页返回返回ABY1.写出逻辑式写出逻辑式例例 2:分析下图的逻辑功能:分析下图的逻辑功能。.&。&。1。1.BAY&A B.Y=AB AB .A B AB=AB+AB化简化简前一页前一页 后一页后一页返回返回 2.列逻辑真值表列逻辑真值表001 100100111Y=AB+AB3.分析逻辑功能分析逻辑功能 输入输入相同相同输出为输出为“1”,输入,输入
11、相异相异输出为输出为“0”,称为,称为“判一致电路判一致电路”,可用于判断各输,可用于判断各输入端的状态是否相同。入端的状态是否相同。前一页前一页 后一页后一页返回返回ABY例例 3:分析下图的逻辑功能:分析下图的逻辑功能Y。&。&。1.BA&C写出逻辑式:写出逻辑式:=AC+BCA101AY=AC BC设:设:C=1前一页前一页封锁封锁打开打开选通选通A信号信号前一页前一页 后一页后一页返回返回例例 3:分析下图的逻辑功能:分析下图的逻辑功能封锁封锁打开打开B0Y。&。&。1.BA&C11B选通选通B信号信号写出逻辑式:写出逻辑式:=AC+BCY=AC BC设:设:C=0前一页前一页 后一页
12、后一页返回返回11.3.2 11.3.2 组合逻辑电路的设计组合逻辑电路的设计根据逻辑功能要求根据逻辑功能要求逻辑电路逻辑电路设计设计 1.由逻辑要求,列出逻辑真值表由逻辑要求,列出逻辑真值表 2.由逻辑真值表写出逻辑表达式由逻辑真值表写出逻辑表达式 3.简化和变换逻辑表达式简化和变换逻辑表达式 4.画出逻辑图画出逻辑图设计步骤如下:设计步骤如下:前一页前一页 后一页后一页返回返回例例 1:设计一个三变量奇偶检验器。:设计一个三变量奇偶检验器。要求要求:当输入变量当输入变量A、B、C中有奇数个同时为中有奇数个同时为“1”时,输出为时,输出为“1”,否则为,否则为“0”。用用“与与非非”门实现。
13、门实现。1.列真值表列真值表前一页前一页 后一页后一页返回返回 A B C Y 0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 10 1 101001 2.写出逻辑表达式写出逻辑表达式 ABCCBACBABAYC前一页前一页 后一页后一页取取 Y=“1”列逻辑式列逻辑式若输入变量为若输入变量为“1”,则,则取输入变量本身取输入变量本身(如如 A);若输入变量为若输入变量为“0”则取则取其反变量其反变量(如如 A)。各组合之间各组合之间是是“或或”关系关系在一种组合中,各输入在一种组合中,各输入变量之间是变量之间是“与与”关系关系ABCCBACBACBA 返回返回
14、A B C Y 0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 10 1 101001 3.画出逻辑图画出逻辑图0110011111&000101110111前一页前一页 后一页后一页返回返回&ABCABCCBACBACBAABCCBACBACBAY加法器加法器前一页前一页 后一页后一页加法器加法器:实现二进制加法运算的电路实现二进制加法运算的电路进位进位如:如:0 0 0 0 11+10101010不考虑低位不考虑低位来的进位来的进位半加器实现半加器实现要考虑低位要考虑低位来的进位来的进位全加器实现全加器实现返回返回1、半加器半加器 前一页前一页 后一页后一页
15、半加:实现两个一位二进制数相加,半加:实现两个一位二进制数相加,不考虑来自低位的进位。不考虑来自低位的进位。两个输入两个输入AB表示两个同位相加的数表示两个同位相加的数两个输出两个输出SC表示半加和表示半加和表示向高位的进位表示向高位的进位COABSC逻辑符号:逻辑符号:半加器:半加器:返回返回半加器真值表半加器真值表逻辑表达式逻辑表达式逻辑图逻辑图BABABAS ABC&=1.ABSC前一页前一页 后一页后一页返回返回0 0A B S C0 00 11 01 11 01 00 12、全加器全加器输入输入Ai表示两个同位相加的数表示两个同位相加的数BiCi-1表示低位来的进位表示低位来的进位输
16、出输出表示本位和表示本位和表示向高位的进位表示向高位的进位CiSi 全加:实现两个一位二进制数相加,全加:实现两个一位二进制数相加,且考虑来自低位的进位。且考虑来自低位的进位。逻辑符号:逻辑符号:COAiBiCi-1SiCiCI 前一页前一页 后一页后一页 全加器:全加器:返回返回Ai Bi Ci-1 Si Ci 0 00 00 10 11 01 01 11 11.列真值表列真值表2.写出逻辑式写出逻辑式1111 iiiiiiiiiiiiiCBACBACBACBAS1111 iiiiiiiiiiiiiCBACBACBACBAC1)(iiiiiCBABA1 iiiCBA前一页前一页 后一页后一页
17、返回返回1 00 01 00 11 00 10 11 101010101&=11.AiCiSiCi-1Bi逻辑图逻辑图COCO1AiBiCi-1SiCi半加器构成的全加器半加器构成的全加器1)(iiiiiiCBABAC1 iiiiCBAS前一页前一页 后一页后一页返回返回11.4 11.4 常用中规模集成组合逻辑功能器件常用中规模集成组合逻辑功能器件11.4.1 二进制并行加法器二进制并行加法器引线排列图引线排列图74LS83B4 S4 C4 C0 GND B1 A1 S11 2 3 4 5 6 7 8A4 S3 A3 B3 Ucc S2 B2 A216 15 14 13 12 11 10 9
18、 内部由若干全内部由若干全加器级联而成加器级联而成,用来实现两,用来实现两个个四位四位二进制二进制数的加法。数的加法。如图连接以后可如图连接以后可得两个四位二进得两个四位二进制数加法结果为制数加法结果为C4S4S3S2S15V可以采用多片级联的方法实现多位加法运算。可以采用多片级联的方法实现多位加法运算。例如:例如:两两片可构成片可构成8位二进制数加法。位二进制数加法。74LS83(二)(二)B4 S4 C4 C0 GND B1 A1 S11 2 3 4 5 6 7 8A4 S3 A3 B3 Ucc S2 B2 A216 15 14 13 12 11 10 974LS83(一)(一)B4 S4
19、 C4 C0 GND B1 A1 S11 2 3 4 5 6 7 8A4 S3 A3 B3 Ucc S2 B2 A216 15 14 13 12 11 10 9S5S6S7S8+5V+5V运算结果为:运算结果为:C8S8S7S6S5S4S3S2S1 译码器是将代码的组合译成一个特定的输译码器是将代码的组合译成一个特定的输出信号的组合逻辑电路。出信号的组合逻辑电路。前一页前一页 后一页后一页返回返回一、一、二进制译码器二进制译码器X1XnX2Y2Y1Y2n-1.二进制二进制译码器译码器二进制译码器一般原理图二进制译码器一般原理图二进制译码器具有二进制译码器具有n个个输入端,输入端,个输出端个输出
20、端和一个使能端。当使和一个使能端。当使能信号有效时,对应能信号有效时,对应每一组输入只有一个每一组输入只有一个输出端为有效电平,输出端为有效电平,其余输出端为无效电其余输出端为无效电平。平。n28个个3位位译码器译码器二二进进制制代代码码高高低低电电平平信信号号3位二进制译码器(位二进制译码器(3线线8线译码器)线译码器)74LS138型型译码器译码器引线排列图引线排列图3/8 线译码器线译码器A、B、C是输入端是输入端Y0Y7是输出端是输出端G1、G2A、G2B是使能是使能端端 16 15 14 13 12 11 10 91 2 3 4 5 6 7 874LS138A B C G2A G2B
21、 G1 Y7 GNDVCC Y0 Y1 Y2 Y3 Y4 Y5 Y674LS138A B C G1 G2A G2BY0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 74LS138型型译码器译码器输输 入入C B AY0 Y1 Y2 Y3 Y4 Y5 Y6 Y70 0 0 0 1 1 1 1 1 1 10 0 1 1 0 1 1 1 1 1 10 1 0 1 1 0 1 1 1 1 10 1 1 1 1 1 0 1 1 1 11 0 0 1 1 1 1 0 1 1 11 0 1 1 1 1 1 1 0 1 11 1 0 1 1 1 1 1 1 0 11 1 1 1 1 1 1 1 1 1 0输输
22、出出真真 值值 表表 G1=0或或G2=1输出均为高。输出均为高。G1=1 G2=0 电路正常工作电路正常工作38线译码器线译码器74138的逻辑表达式的逻辑表达式;器件不工作;器件不工作 ;器件工作;器件工作G1=1和和G2A+G2B=0同时满足,同时满足,Yi=mi (i=0,1,7)G1=1和和G2A+G2B=0不同时满足,不同时满足,Yi=1(i=0,1,7)74LS138型型译码器应用译码器应用构成构成3输入多输出的组合逻辑电路:输入多输出的组合逻辑电路:74211111YYYYCBACBACBACBASiiiiiiiiiiiii76531111YYYYCBACBACBACBACii
23、iiiiiiiiiii7421YYYY7653YYYYCi-1 B A1 0 0&74LS138A B C G1 G2A G2BY0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 SiCi(如加法器)(如加法器)例:应用例:应用3线线-8线译码器线译码器74LS138和与非门和与非门设计一个三变量的判奇电路,即输入中有奇设计一个三变量的判奇电路,即输入中有奇数个数个1时,输出为时,输出为1,否则为,否则为0。1.列真值表列真值表返回返回 A B C F 0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 10 1 101001742174217421YYYYYYYYmmm
24、mABCCBACBACBAF 逻辑表达式为 C B A1 0 0&74LS138A B C G1 G2A G2BY0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 F11.4.2 11.4.2 二二-十进制十进制 在数字电路中,常常需要把运算结果用在数字电路中,常常需要把运算结果用十进制显示出来,这就要用显示译码器。十进制显示出来,这就要用显示译码器。二二 十十进进制制代代码码译译码码器器驱驱动动器器显显示示器器前一页前一页 后一页后一页返回返回。.abcdefg共阴极接法共阴极接法gfedcba 1.半导体数码管半导体数码管 由七段发光二极管构成由七段发光二极管构成例:例:共阴极接法共阴极接法a
25、 b c d e f g 0 1 1 0 0 0 01 1 0 1 1 0 1gfedcbagfedcba低低电电平平时时发发光光高高电电平平时时发发光光。.。a bcdefg共阳极接法共阳极接法。前一页前一页 后一页后一页返回返回 2.七段译码显示器七段译码显示器前一页前一页 后一页后一页A0 A1A2A3agfedcb译译码码器器二二 十十进进制制代代码码7个个4位位10010111111(共阴极共阴极)返回返回前一页前一页 后一页后一页A3 A2 A1 A0a b c d e f g 0 0 0 0 1 1 1 1 1 1 0 00 0 0 1 0 1 1 0 0 0 0 10 0 1 0 1 1 0 1 1 0 1 20 0 1 1 1 1 1 1 0 0 1 30 1 0 0 0 1 1 0 0 1 1 40 1 0 1 1 0 1 1 0 1 1 50 1 1 0 1 0 1 1 1 1 1 60 1 1 1 1 1 1 0 0 0 0 71 0 0 0 1 1 1 1 1 1 1 81 0 0 1 1 1 1 1 0 1 1 9输输 入入输输 出出显示显示数码数码gfedcba返回返回常用译码电路常用译码电路7448及其与数码管的连接见及其与数码管的连接见P253作业:作业:11-7(3)、)、11-9(1)11-10、11-18