1、实际问题与一元二次方程复习课件2.2.某种植物的主干长出若干树木的支干某种植物的主干长出若干树木的支干,每个支干又长出同每个支干又长出同样树木的小分支样树木的小分支,主干、支干、和小分支的总数是主干、支干、和小分支的总数是9191,每个,每个支干长出多少小分支?支干长出多少小分支?解:设每个支干长出解:设每个支干长出x个小分支个小分支根据题意可列方程根据题意可列方程整理得整理得解得解得 答:每个支干长出答:每个支干长出9个小分支个小分支1+x+x2=91x2 +x 90=0 x1=9,x2=10(不符合题意舍去不符合题意舍去)3 3 参加一次足球联赛的每两队之间都进行两次比赛,参加一次足球联赛
2、的每两队之间都进行两次比赛,共要比赛共要比赛9090场,共有多少个队参加比赛场,共有多少个队参加比赛解:设有解:设有x个队参加比赛个队参加比赛根据题意可列方程根据题意可列方程x(x 1)=90.整理得整理得x2x 90=0.解得解得 答:共有答:共有10队参加比赛队参加比赛 x1=10,x2=9(不符合题意舍去不符合题意舍去).4.4.如图,要设计一幅宽如图,要设计一幅宽20cm20cm、长、长30cm30cm的图案,其中有两横的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为两竖的彩条,横、竖彩条的宽度比为3 3:2 2,如果要使彩条所,如果要使彩条所占面积是图案面积的四分之一,应如何设计彩
3、条的宽度(精占面积是图案面积的四分之一,应如何设计彩条的宽度(精确到确到0.1cm0.1cm)?)?解:设横彩条的宽度为解:设横彩条的宽度为3x,竖彩条为,竖彩条为2x,根据题意如图所示,可列方程为根据题意如图所示,可列方程为2303x+2202x 43x2x=0.253020整理方程为整理方程为12x2130 x+75=0解得解得120.6110.22xx,(不符合实际舍去)答:横彩条的宽为答:横彩条的宽为3x 1.83,竖彩条的宽为,竖彩条的宽为2x 1.22.5.5.青山村种的水稻青山村种的水稻20012001年平均每公顷产年平均每公顷产72007200kg,20032003年平年平均每
4、公顷产均每公顷产84508450kg,求水稻每公顷产量的年平均增长率,求水稻每公顷产量的年平均增长率 解:设水稻每公顷产量的年平均增长率为解:设水稻每公顷产量的年平均增长率为x,根据题意可列方程根据题意可列方程7200(1+x )2=8450.解得解得(1+x )2 1.17.x1 0.08 x2 2.08(不符合实际舍去不符合实际舍去).答:水稻每公顷产量的年平均增长率约为答:水稻每公顷产量的年平均增长率约为86.新华商场销售某种水箱,每台进货价为新华商场销售某种水箱,每台进货价为2500元,市场调研表明:当销元,市场调研表明:当销售价为售价为2900元时,平均每天能售出元时,平均每天能售出
5、8台;而当销售价每降低台;而当销售价每降低50元时,平元时,平均每天就能多售出均每天就能多售出4台商场要想使这种冰箱的销售利润平均每天达到台商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?元,每台冰箱的定价应为多少元?本题的主要等量关系是什么?本题的主要等量关系是什么?每台冰箱的销售利润每台冰箱的销售利润平均每天销售冰箱的数量平均每天销售冰箱的数量5000元元如果设每台冰箱降价如果设每台冰箱降价x元,那么每台冰箱的定价就是元,那么每台冰箱的定价就是_元,每元,每台冰箱的销售利润为台冰箱的销售利润为_元,平均每天销售冰箱的数元,平均每天销售冰箱的数量为量为_台,这样
6、就可以列出一个方程,进而解决问题了台,这样就可以列出一个方程,进而解决问题了解:设每台冰箱降价解:设每台冰箱降价x元,根据题意,得元,根据题意,得29002500845000.50 xx 解这个方程,得解这个方程,得x1=x2=150.2900150=2750.所以,每台冰箱应定价所以,每台冰箱应定价2750元元(2900 x)(2900 x2500)50 x(8+4 )增增长长率率问问题题 某商场今年月份的营业额为某商场今年月份的营业额为400400元,月元,月份的营业额比月份增加份的营业额比月份增加1010,月份的营业,月份的营业额为额为633.6633.6元,求月份到月份营业额的平均元,
7、求月份到月份营业额的平均增长率增长率2月份月份 3月份月份 5月份月份增加增加1010,平均每月增加平均每月增加x x,400元元Ax1an)(400(1+10%)元元=440元元440(1+x)2元元440(1+x)2=633.6解解:设设月份到月份营业额的平均增长率为月份到月份营业额的平均增长率为x x直接开平方法解得解得:x:x1 1=0.2=20%=0.2=20%x x2 2=-2.2(=-2.2(不合不合,舍去舍去)a a表示变化前的量表示变化前的量x x表示变化率表示变化率A A表示变化后的量表示变化后的量增增长长率率问问题题 某商场今年月份的营业额为某商场今年月份的营业额为400
8、400元,月元,月份的营业额比月份增加份的营业额比月份增加1010,以后几个月的以后几个月的增长率有所改变增长率有所改变,从从3 3月份到月份总的营业额月份到月份总的营业额为为16601660元,求月份到月份营业额的平均增元,求月份到月份营业额的平均增长率长率2月份月份 3月份月份 5月份月份增加增加1010,平均每月增加平均每月增加x x,400元元400(1+10%)元元=440元元440(1+x)2元元440+440(1+x)+440(1+x)2=1660解解:设设月份到月份营业额的平均增长率为月份到月份营业额的平均增长率为x x面面积积问问题题 某中学有一块长为某中学有一块长为a a米
9、米,宽为宽为b b米的矩形场地米的矩形场地,计计划在该场地上修筑宽是划在该场地上修筑宽是2 2米的两条互相垂直的道路米的两条互相垂直的道路,余下的四块矩形场地建成草坪余下的四块矩形场地建成草坪.(1)(1)如下图如下图,分别写出每条道路的面积分别写出每条道路的面积,用含用含a,ba,b的代的代数式表示数式表示;(2)(2)已知已知a:b=2:1,a:b=2:1,并且四块草坪的面积和为并且四块草坪的面积和为312312平方平方米米,请求出原来矩形场地的长和宽各为多少米请求出原来矩形场地的长和宽各为多少米?ab解解:(1):(1)横条道路的面积为横条道路的面积为2a2a平方米平方米,竖条道路的面积
10、为竖条道路的面积为2b2b平方米平方米.面面积积问问题题 某中学有一块长为某中学有一块长为a a米米,宽为宽为b b米的矩形场地米的矩形场地,计计划在该场地上修筑宽是划在该场地上修筑宽是2 2米的两条互相垂直的道路米的两条互相垂直的道路,余下的四块矩形场地建成草坪余下的四块矩形场地建成草坪.(1)(1)如下图如下图,分别写出每条道路的面积分别写出每条道路的面积,用含用含a,ba,b的代的代数式表示数式表示;(2)(2)已知已知a:b=2:1,a:b=2:1,并且四块草坪的面积和为并且四块草坪的面积和为312312平方平方米米,请求出原来矩形场地的长和宽各为多少米请求出原来矩形场地的长和宽各为多
11、少米?ab解解:(1):(1)横条道路的面积为横条道路的面积为2a2a平方米平方米,竖条道路的面积为竖条道路的面积为2b2b平方米平方米.(2)(2)设设b=xb=x米米,则则a=2xa=2x米米由题意得由题意得:(x-2)(2x-2)=312 (x-2)(2x-2)=312解得解得:x:x1 1=14,x=14,x2 2=-11(=-11(不合不合,舍去舍去)答答:此矩形的长与宽各为此矩形的长与宽各为2828米米,14,14米米.行行程程问问题题 汽车在行驶过程中汽车在行驶过程中,由于惯性由于惯性,刹车时还要继续向刹车时还要继续向前滑行一段距离才能停住前滑行一段距离才能停住,称这段距离为刹车
12、距离称这段距离为刹车距离.刹车距离是分析事故的一个重要因素刹车距离是分析事故的一个重要因素,甲、乙两辆甲、乙两辆汽车相向而行,发现情况不对时,同时刹车,但还汽车相向而行,发现情况不对时,同时刹车,但还是相撞了,事后现场测得甲车的刹车距离为是相撞了,事后现场测得甲车的刹车距离为1212米,米,乙车的刹车距离超过乙车的刹车距离超过1010米,但小于米,但小于1212米,根据两车米,根据两车车型查阅资料知:甲车的车速车型查阅资料知:甲车的车速x x(千米(千米/小时)与刹小时)与刹车距离车距离S S甲之间有下述关系:甲之间有下述关系:S S甲甲=0.1x+0.01x=0.1x+0.01x2 2;乙车
13、乙车的车速的车速x(x(千米千米/小时小时)与刹车距离与刹车距离S S之间有下述关之间有下述关系系:S:S乙乙=x.=x.请从两车的速度方面分析相撞的原因请从两车的速度方面分析相撞的原因.41解解:因为甲车刹车距离为因为甲车刹车距离为1212米米,则则0.1x+0.01x0.1x+0.01x2 2=12=12 解得解得:x x1 1=30,x=30,x2 2=-40(=-40(不合不合,舍去舍去),),即甲车的车速为即甲车的车速为3030千米千米/秒秒.乙车刹车距离乙车刹车距离S S乙乙:10S:10S乙乙12,12,即即10 x12,10 x12,所以所以40 x48.40 x48.所以乙车
14、车速超过限速所以乙车车速超过限速4040千米千米/小时的规定小时的规定,所以两车相撞的原因是乙车超速所以两车相撞的原因是乙车超速.41利利润润问问题题 某水果批发商场经销一种高档水果某水果批发商场经销一种高档水果,如果每千克如果每千克盈利盈利1010元元,每天可售出每天可售出500500千克千克,经市场调查发现经市场调查发现,在在进价不变的情况下进价不变的情况下,若每千克涨价若每千克涨价1 1元元,日销售量将日销售量将减少减少2020千克千克,现该商场要保证每天盈利现该商场要保证每天盈利60006000元元,同时同时又让顾客得到实惠又让顾客得到实惠,那么每千克应涨价多少元那么每千克应涨价多少元
15、?每千克的盈利每千克的盈利每天的销售量每天的销售量=每天的盈利每天的盈利解解:设每千克应涨价设每千克应涨价x x元元.由题意得由题意得:(10+x)(500-20 x)=6000 (10+x)(500-20 x)=6000解得解得:x:x1 1=5,x=5,x2 2=10=10因为为了使顾客得到实惠因为为了使顾客得到实惠,所以所以x=5x=5答答:每千克应涨价每千克应涨价5 5元元.(10+x)(10+x)元元(500-20 x)(500-20 x)千克千克60006000元元 如图如图:客轮沿折线客轮沿折线A-B-CA-B-C从从A A出发经出发经B B再到再到C C匀速航行匀速航行,货轮从
16、货轮从ACAC的中点的中点D D出发沿某一方向匀速直线航行出发沿某一方向匀速直线航行,将将一批货物送达客轮一批货物送达客轮.两船同时起航、同时到达折线两船同时起航、同时到达折线A-B-CA-B-C上的某点上的某点E E处处.已知已知AB=BC=200AB=BC=200海里海里,ABC=90,ABC=900 0,客轮速度是货轮速度的客轮速度是货轮速度的2 2倍倍.(1)(1)选择两船相遇之处选择两船相遇之处E E点点()()A.A.在线段在线段BABA上上 B.B.在线段在线段BCBC上上C.C.可以在线段可以在线段ABAB上上,也可以在线段也可以在线段BCBC上上 D.D.无法确定无法确定(2)(2)求货轮从出发到两船相遇共航行了多少海里求货轮从出发到两船相遇共航行了多少海里?(经过保留根号经过保留根号)ACBDEF 一路下来,我们结识了很多新知识,一路下来,我们结识了很多新知识,也有了很多的新想法。你能谈谈自己的收也有了很多的新想法。你能谈谈自己的收获吗?说一说,让大家一起来分享。获吗?说一说,让大家一起来分享。