1、活动一:做一做活动一:做一做 一座拱桥为抛物线型,其函数解析式为 当水位线在AB位置时,水面宽4米,这时水面离桥顶的高度为米;当桥拱顶点到水面距离为2米时,水面宽为米221xyxyABO24 如图的抛物线形拱桥如图的抛物线形拱桥,当水面为当水面为 时时,拱桥顶离水面拱桥顶离水面 2 m,水面宽水面宽 4 m,水面下降水面下降 1 m,此时水面宽度为多此时水面宽度为多少?水面宽度增加多少少?水面宽度增加多少?l活动二:探究活动二:探究提示:提示:建立平面直角坐标系建立平面直角坐标系 抛物线形拱桥,当水面在抛物线形拱桥,当水面在 时,时,拱顶离水面拱顶离水面2m2m,水面宽度,水面宽度4m4m,水
2、,水面下降面下降1m1m,水面宽度为多少?水,水面宽度为多少?水面宽度增加多少?面宽度增加多少?lxy0(2,-2)(-2,-2)当当 时,时,所以,水面下降所以,水面下降1m,水面的宽,水面的宽度为度为 m.3y6x62462水面的宽度增加了水面的宽度增加了m探究:探究:2axy 解:设这条抛物线表示的二次函数为解:设这条抛物线表示的二次函数为21a由抛物线经过点(由抛物线经过点(2,-2),可得),可得221xy所以,这条抛物线的二次函数为:所以,这条抛物线的二次函数为:3y当水面下降当水面下降1m时,水面的纵坐标为时,水面的纵坐标为ABCD 抛物线形拱桥,当水面在抛物线形拱桥,当水面在
3、时,时,拱顶离水面拱顶离水面2m2m,水面宽度,水面宽度4m4m,水面下降水面下降1m1m,水面宽度为多少水面宽度为多少?水面宽度增加多少?水面宽度增加多少?lxy0(4,0)(0,0)462水面的宽度增加了水面的宽度增加了m(2,2)2(2)2ya x解:设这条抛物线表示的二次函数为解:设这条抛物线表示的二次函数为21a由抛物线经过点(由抛物线经过点(0,0),可得),可得21(2)22yx 所以,这条抛物线的二次函数为:所以,这条抛物线的二次函数为:当当 时,时,所以,水面下降所以,水面下降1m,水面的,水面的宽度为宽度为 m.1 y6262x 1y 当水面下降当水面下降1m时,水面的纵坐
4、标为时,水面的纵坐标为CDBEX yxy0 0X y0X y0(1)(2)(3)(4)活动三:想一想活动三:想一想 通过刚才的学习,你知道了用二次函数知识解决抛物线形建筑问题的一些经验吗?建立建立适当适当的直角坐标系的直角坐标系审题,弄清已知和未知审题,弄清已知和未知合理合理的设出二次函数解析式的设出二次函数解析式 求出二次函数解析式求出二次函数解析式 利用解析式求解利用解析式求解得出实际问题的答案得出实际问题的答案 有一抛物线型的立交桥拱,这个拱的最大有一抛物线型的立交桥拱,这个拱的最大高度为高度为16米,跨度为米,跨度为40米,若跨度中心米,若跨度中心M左,右左,右5米处各垂直竖立一铁柱支
5、撑拱顶,米处各垂直竖立一铁柱支撑拱顶,求铁柱有多高?求铁柱有多高?21y(20)16,0 025a x代入(,)得a=-活动四:练一练活动四:练一练20-5=15xy当时,求P24-1拓展:作业精编P23/2、3 P23/2 先用待定系数法求二次函数的解析式书 阅读教材P12-13?的面积等于)几秒后(的函数关系式;与)写出(同时出发:、分别从、,如果时间为运动的面积为的速度移动,设以的边向点开始沿从点点的速度移动以边向点开始沿从点点中在mcmcPBQxyBAQPxsyPBQscmCBCBQscmBABAPBABC22821/2,/1,90,.52211(1)Q6-t)26226(2)y8x.
6、PBQySPB Btttytt(当时,求拓展升华拓展升华教材P14-7.,14)3(;,)2(;)1(.,1,.,2.,),8,0(,2.62的值求时的面积等于当四边形轴平行于为何值时当的值求秒的运动时间,设点、连接运动沿出发从点个单位长度的速度以每秒点同时运动沿出发速度的速度从个单位长度的以每秒动点交抛物线于另一点轴平行于直线轴交于点与两点、轴交于与已知抛物线tPQBCyPQtatPCBPQBAAQDCCPCxDCDyBAxaaxyx2t68ytC6 8CDx 轴,可求出(,)将t=0,y=8代入函数可求出a=62t-6t80AB解方程 可求出 和 点的坐标A(2,0),B(4,0)作业:作业精编P23-24