1、第05讲 进程调度及进程管理5.1 作业5.2 进程5.3 线程5.4 小结5.5 习题 提高处理机(CPU)的使用率,使它尽可能处于工作状态,是操作系统管理功能的主要目标之一。在Linux系统中,提高处理机使用率的技术措施主要是多道和分时,处理机在进程之间切换,按照一定的规则轮流执行每个进程。对于单个处理机的系统,这些进程宏观上看似并行执行,而微观上来看仍然是串行执行的,这种执行方式被称为并发执行。操作系统通过并发控制机制,对处理机进行分配、调度,在保证每个进程都得到公平合理执行的同时,使系统中的各种资源得到充分的使用。本讲主要围绕处理机管理展开,着重介绍进程的概念,同时也包括相关的两个基本
2、概念:作业和线程。作业是用户向计算机系统提交一项工作的基本单位,是用户在一次事务处理或计算过程中要求计算机所做工作的总和。作业和程序是两个相互联系而又不同的概念。如果一次业务处理可以由某一个程序完成,就是说这个业务处理只要提交这一个程序就够了,这种情况下,这个程序就是一个作业。通常,完成一次业务需要由多个程序协同完成,这时,多个程序、这些程序需要的数据以及必要的作业说明一起构成一个作业。系统通过作业说明书(JCB)或者作业控制语句(JCL)控制程序和相应的数据执行,完成整个业务处理。5.1 作业 按照对作业的处理方式,可以分为联机、批处理等作业。Linux系统中的shell提供了操作系统和用户
3、之间的联机命令接口。Linux的shell同时提供了程序级接口。用户通过提交一个命令或一个命令序列以批处理方式执行特定的操作。在Linux分时批处理系统中,也可以根据对作业执行时的响应特征分为前台作业和后台作业。在多用户系统中,多个用户、不同类型的作业可能同时请求执行,控制和管理这些作业,协调它们之间的关系,就是作业调度,作业调度是处理机调度的一部分。5.1 作业 计算机内存中同时存放多个相互独立的已经开始运行的程序实体,大家按照某种规则轮流使用处理器,这是现代多道操作系统实现资源共享,提高系统资源利用率的主要方式。描述这些程序实体的概念就是进程。在多道情况下,每个进程独立地拥有各种必要的资源
4、,占有处理机,独立地运行。在多道系统中,同时存在多个进程,所以当某个进程进入等待状态时,操作系统将把处理机控制权拿过来并交给其他可以运行的进程。进程之间存在着相互制约、相互依赖的约束关系。5.2 进程 一种最糟糕的情况是所有进程都拥有部分资源,同时在等待其他进程拥有的资源,这样,大家都无法运行,进入一种永久等待的状态,这种情况称为死锁,死锁是对系统资源极大的浪费,必须设法避免。本节着重讨论现代多道操作系统中的核心概念进程,这是理解操作系统工作原理的基础和关键。首先介绍单个进程的状态、状态转换的条件和控制原语、进程在系统中的静态描述等,接着介绍多个进程之间的约束关系,由此引出进程间通信的概念,通
5、信是协调、解决进程间约束关系的惟一手段,这种约束关系处理不当造成的最严重的后果就是死锁。5.2 进程5.2.1 进程的概念 进程的概念最早出现在60年代中期,用于多道系统,在Linux系统中,进程也称为任务(task)。简单讲,进程就是正在运行的程序,更为严谨的表达是,进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动。进程的概念对于理解操作系统有决定性的意义,而真正理解进程,必须了解它的基本性质。进程是操作系统分配资源和进行调度的独立单位,具有独立性、动态性。多道系统中同时存在多个进程,这些进程拥有各自的资源,各自独立地执行,对于单处理机系统,进程宏观上同时运行而微观上是依次执行
6、,这种情况称为并发执行。5.2 进程1.进程和程序 进程和程序是一对相互联系的概念。程序是指令的有序集合,是一个静态的概念,描述完成某个功能的一个具体操作过程,而进程是程序针对某一组数据的一次执行过程,更强调动态特征。一个完整的进程,包括程序、执行程序所需要的数据,同时还必须包括记录进程状态的数据资料。在多道分时操作系统中,按照时间片轮流在各个进程间切换。对于单处理器系统,每一个时刻只能有一个进程在执行,当分配给该进程的时间片用完之后,不管该进程运行到什么程度,都必须立即停止,然后让出处理器资源,下一个进程进入执行状态。5.2 进程 让出处理器的进程必须记录好正在运行的状态,包括寄存器、堆栈等
7、各种信息,这些信息保证当处理器下次切换到这个进程的时候,进程能够正确地从上次执行到的位置继续往下执行。一个程序在处理相同或不同的操作数据时可以同时对应于多个进程。一个进程也可以包含多个程序,某个程序在运行过程中,可能同时会调用到多个其他程序,这些具有调用关系的多个程序共同构成一次完整的运行活动,即一个完整的进程。5.2 进程 举一个直观的例子。我们在Linux系统下使用编辑器vi进行编辑,同时打开多个窗口,编辑多个不同名称的文件,vi编辑器是一个可执行程序,不同的文件就是不同的操作数据,而对应于这些文件同时打开的每一个编辑窗口就对应着一个进程,每一个进程都处于不同的状态。如果说程序是提供计算机
8、操作的一组工作流程的话,进程就是具体的工作过程,按照同样的工作流程,针对不同的原料,可以同时开始多个工作过程,得到多种不同的成品。这种工作流程和工作过程的关系就可以类比为程序和进程的关系。5.2 进程2.进程和作业 作业是用户向计算机系统提交一项工作的基本单位,是用户在一次事务处理或计算过程中要求计算机所做工作的总和。进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动,是操作系统分配资源和进行调度的基本单位。作业是描述用户向系统提交工作任务的实体单位,而进程是系统完成工作任务时程序执行的实体单位。从这个角度讲,他们处于不同的层次,作业描述用户和操作系统之间的任务委托关系,而进程描述
9、操作系统内部任务的具体执行过程。一个用户的任务,即作业,由用户提交给系统,必须以进程的形式具体完成。5.2 进程 对于批处理系统,通常,作业放在外存中专门的作业队列中等待进入内存执行,要经过一次宏观调度,由外存进入内存,以进程的形式运行。而对于Linux这样的分时系统,没有宏观调度,作业不经过调度,直接进入内存,以进程的形式开始运行。任何一个进程,都存在于内存中,并且是已经开始运行的动态实体。5.2 进程5.2.2 进程描述 进程是一个动态的概念,描述程序的一次运行活动。它存在于系统的内存中,是操作系统可感知、可控制的动态实体,是系统分配各种资源、进行调度的基本单位。1.进程控制块 现在我们来
10、讨论进程在内存中的静态存在方式。在多道系统中,处理机在多个进程之间来回切换,每个进程都会在暂停、运行这两种状态之间来回转换。当一个进程在处理机切换过来重新进入运行状态时,它必须严格精确地接着上次运行的位置继续进行,进程的静态描述可以保持切换现场,确保准确衔接,保证进程调度的实现,顺利完成程序所规定任务。5.2 进程 进程切换现场称为进程上下文(context),包含了一个进程所具有的全部信息,一般包括:进程控制块(Process Control Block,PCB)、有关程序段和相应的数据集,具体组成见图2.1。程序段是某个进程执行的相关指令集合,和静态的程序段有明确的对应关系,相应数据集是这
11、个程序段正在操作的那部分数据,PCB是记录进程各种状态的数据体,PCB是操作系统管理感知、控制进程的数据实体,通过它,就可以找到进程的程序段和数据集,系统正是通过PCB来控制进程的。一般来讲,PCB记录着进程的所有资料,是全部或部分常驻内存的,PCB记录着程序段和数据集的地址指针,通过这些指针,就可以得到具体的指令和数据。5.2 进程 PCB记录了进程的全部控制信息,一般较庞大而复杂,它可以按照功能大概分成四个组成部分:进程描述信息、进程控制信息、进程相关的资源信息和CPU现场保护结构(如图2.1)。5.2 进程图2.1 进程描述数据关系示意图(进程上下文)2.Linux的PCB Linux系
12、统的进程控制块PCB用一个称为task-struct的结构体来描述。(1)进程描述信息 通过进程描述信息,Linux系统可以惟一地确定某一个进程的基本情况,可以了解该进程所属的用户及用户组等信息,同时还能确定这个进程与所有其他进程之间的关系。这些描述信息包括:进程号、用户和组标识以及描述进程家族关系的连接信息。5.2 进程 进程号(pid,process identifier)Linux系统为每一个进程分配一个标识号,通过这个标识号识别、控制、调度这个进程,别的进程也通过这个标识号来识别这个进程并与之通信,用户也可以使用操作命令或系统调用通过标识号来控制该进程。用户和组标识(user and
13、group identifier)Linux系统中有四类不同的用户和组标识,主要用来控制进程对系统文件的访问权限,实现系统资源的安全访问。Linux使用组将文件和目录的访问特权授予一组用户,一个进程可以同时属于多个组,这些组都被放在进程的task-struct中的group数组中。5.2 进程 连接信息(Links)Linux系统中的进程之间形成树状的家族关系,连接信息记录某个进程的父进程、兄弟进程(具有相同父进程的进程)以及子进程的信息,描述一个进程在整个家族系统中的具体位置。(2)进程控制信息 进程控制信息记录了进程的当前状态、调度信息、记时和时间信息以及进程间通信信息,是系统确定进程的状
14、态、了解进程之间的关系、进行进程调度的主要依据。进程当前状态 进程的生命周期中,总是不停地在各种状态之间转换,有关进程的状态及转换规则,在下节讨论。5.2 进程 调度信息 系统的调度程序利用这部分信息决定哪一个进程应该运行,包括优先级、实时优先级、计数器和调度策略。记时信息 包括时间和定时器,给出进程占有和利用CPU的情况,是调度的依据,也是进行统计、分析以及记费的依据。通信信息 多个进程之间通信的各种信息也记录在PCB中。Linux支持典型的UNIX进程间通信机制信号、管道,也支持System通信机制共享内存、信号量和消息队列。5.2 进程(3)进程资源信息 Linux的PCB中包含大量的系
15、统资源信息,这些信息记录了与该进程有关的存储器的各种地址和资料、文件系统以及打开文件的信息等等。通过这些资料,进程就可以得到运行需要的相关程序段以及必要的数据。(4)CPU现场信息 进程的静态描述必须保证一个进程在获得处理机并重新进入运行状态时,能够精确地接着上次运行的位置继续进行。相关程序段和数据集以及处理机现场(或处理机状态)都必须保存。处理机(CPU)现场信息一般包括处理机的内部寄存器和堆栈等基本数据。5.2 进程 task-struct是Linux系统的进程控制块(PCB),通过对PCB的操作,系统为进程分配资源并进行调度,最终完成进程的创建和撤销。系统利用PCB中的描述信息来标识一个
16、进程,根据PCB中的调度信息决定该进程是否应该运行。如果这个进程要进入运行,首先根据其中的CPU现场信息来恢复运行现场,然后根据资源信息获取对应的程序段和数据集,接着上次的位置开始执行,同时通过PCB中的通信信息和其他进程协同工作。5.2 进程5.2.3 进程状态及转换 系统通过PCB对进程进行控制,进程不断地在不同的状态之间转换。1.进程的基本状态 在分时系统中,一个进程拥有了所需要的全部资源,就可以开始执行,当分配的时间片结束,让出CPU资源,这种只要能够占有CPU就能进入执行的状态称为就绪状态。有时,多个进程之间互相制约,某个进程必须等到某个事件发生才能够竞争CPU资源,这是等待状态,当
17、等待的事件发生之后,这个进程被唤醒,由等待状态进入就绪状态,直到获得CPU才开始执行。等待状态、就绪状态和执行状态是一个进程所具有的最基本的三种状态,见图2.2。5.2 进程图2.2 进程基本状态及转换示意图5.2 进程2.Linux系统进程状态 Linux系统的2.2.16版本进程共有六种状态,包括运行状态、可中断等待状态、不可中断等待状态、僵死状态、暂停状态和交换状态,而在2.4.0版本中取消了交换状态,加入独占状态。进程状态值说明TASK-RUNNING0运行态TASK-INTERRUPTIBLE1等待态,可中断TASK-UNINTERRUPTIBLE2等待态,不可中断TASK-ZOMB
18、IE4僵死态TASK-STOPPED8暂停态TASK-SWAPPING16交换态(2.4.X版本已取消)TASK-EXCLUSIVE32独占态5.2 进程表2.1 Linux系统(2.2.X2.4.X版本)进程状态表(1)运行状态(running)系统中的运行状态实际包含上述基本状态中的执行和就绪两种状态,进程是正在运行还是处于就绪状态准备运行,要靠当前是否占有CPU资源来区分。(2)等待状态 系统把基本的等待状态进一步细化为可中断的等待态和不可中断的等待态两种。处于这种状态的进程都在等待某个事件或某个资源,可中断等待状态的进程可以被信号唤醒而进入就绪状态等待调度,而不可中断等待状态的进程是因
19、为硬件资源无法满足,不能被信号唤醒,必须等到所等待的资源得到之后由特定的方式唤醒。5.2 进程5.2 进程(3)僵死状态(zombie)由于某些原因进程被终止,这个进程所拥有的内存、文件等资源全部释放之后,还保存着PCB信息,这种占有PCB但已经无法运行的进程就处于僵死状态。(4)暂停状态 处于暂停状态的进程,一般都是由运行状态转换而来,等待某种特殊处理。比如处于调试跟踪的程序,每执行到一个断点,就转入暂停状态,等待新的输入信号。(5)交换状态 处于交换状态的进程正在执行内存、外存的交换工作。这个状态在2.2.X版本的内核中基本已经不使用,在2.4.X版本中没有这种状态。5.2 进程(6)独占
20、状态 它应该是等待状态的一种,处于独占状态的进程位于等待队列中,当等待的事件发生时,只有处于这种状态的进程被唤醒,其他处于可中断和不可中断等待状态的进程则继续等待。Linux 2.4引入独占状态后,如果事件发生,只唤醒处于独占状态的那一个进程,这就可以大大提高Apache这类Web应用的效率,使Linux更适合网络服务器的角色。Linux系统进程的状态转换情况。采取一定的简化措施:按照进程是否占有处理机为依据,把进程的运行状态分为执行和就绪两种状态;等待状态统一考虑,不再区分是否可中断,独占状态也作为一种等待状态处理;不涉及交换状态。见图2.3。图2.3同时也记录了一个进程在整个生命周期的变化
21、过程。从图的左下方开始看,系统在某种特定的情况下,响应某个要求,首先分配各种资源,创建一个新的进程,进程进入就绪队列。图2.3 Linux系统进程状态及转换示意图5.2 进程 所有的进程必须在就绪之后,才有资格竞争CPU,进入运行状态。这样,进程的整个生命周期中,大致的转换路径总是沿着三个闭合回路进行。就绪状态和执行状态形成第一个回路。进程进入就绪态,放入可执行队列等待,一旦被调度函数选中,就切换现场,进入运行状态,等自己的时间片耗尽之后,马上保护现场,让出CPU,转入就绪状态,等待新的调度。执行状态、等待状态和就绪状态形成第二个回路。处于执行状态的进程,有时需要等待某个事件或某种资源的发生,
22、这时,继续占有CPU也无法开展工作,就转入等待状态,CPU由下一个被调度的进程占有。当等待进程所等待的事件发生后,等待进程被唤醒,进入就绪状态。5.2 进程 执行状态、暂停状态和就绪状态构成第三个回路。当接收到某种特殊的信号,比如SIGSTOP(Linux的停止信号)时,处于执行状态的进程放弃CPU,保护现场之后,进入暂停状态,直到获得另外一个特殊的信号才进入就绪状态。一个处于执行状态的进程调用退出函数exit之后,进程就会进入僵死状态,这种状态下,进程释放了PCB之外的所有系统资源。也就是说,它在系统中只留下这个进程的一个PCB。僵死进程的父进程通过PCB了解到该进程所处的状态后,采取相应的
23、处理措施,回收PCB,这个进程就完成了它的使命,从僵死走向彻底消亡,上图右上方的虚箭头表示了这种结局。5.2 进程5.2.4 进程控制 进程控制,是指对系统中的全部进程实施有效的管理,使得进程能够及时创建、撤销,正确地完成进程各状态之间的转换,使得多个进程高效率并发执行,达到系统资源高度共享的目的。进程状态之间的转换转换通常由三种不同的方式控制:进程控制原语、系统核心函数(比如调度)、和外部事件发生(比如中断)。这里说的所谓原语,指系统状态下执行的一些具有特定功能的程序段,这些程序段具有“原子性”,是执行过程中不可分割的最小单位。用于进程控制的原语有:创建原语、撤销原语、阻塞原语、唤醒原语等。
24、5.2 进程(1)创建原语 进程创建原语用于建立一个新的进程,这个新进程可以由内核调用进程创建原语建立,也可以由父进程执行进程创建原语生成一个子进程,子进程还可以生成子进程,以形成树形进程家族结构。进程创建原语的主要任务是形成进程的PCB,因此,调用者必须提供有关的参数,例如进程名、进程优先级、进程正文段起始地址、资源清单等。(2)撤销原语 当一个进程完成了指定的任务或由于某种错误导致异常终止时,要撤销这个进程以便释放进程占用的资源。进程撤销原语根据调用者提供的信息,找到指定的进程,回收其占用的资源和PCB。5.2 进程(3)阻塞原语 当正在运行的进程需要等待某一事件,由自己调用阻塞原语把自己
25、阻塞起来成为等待状态。阻塞原语主要完成保护CPU现场的工作,即首先中断处理机保存该进程的CPU现场,然后把被阻塞的进程置为等待状态,插入到相应的等待队列,最后转入进程调度程序,从就绪队列中选择一个进程投入运行。(4)唤醒原语 当处于等待状态的进程所等待的事件出现时,由发现者进程调用唤醒原语唤醒被阻塞的进程。进程控制原语由系统执行。同时,操作系统还提供了一些用于进程控制的系统调用和操作命令,用户可以通过程序或者命令的方式控制进程。5.2 进程5.2.5 进程约束 现代操作系统中,程序并发执行,多个进程各自独立地运行,同时竞争和共享系统中有限的资源,这种竞争与合作构成了系统进程之间的约束关系。每个
26、进程独立地申请和释放系统资源,把申请某一类资源的进程称为该类资源的消费者,把释放同类资源的进程称为该类资源的生产者,就得到描述进程约束关系的一般模型:生产者消费者问题,也称为有界缓冲区问题。比较简单的情况,两进程共享一个长度为N(N0)的有界缓冲区,一个进程Pp往缓冲区中送数据,是生产者,另一个进程Pc从缓冲区中读取数据,是消费者,如图2.4,下面来讨论它们间的约束关系。5.2 进程图2.4 简单的生产者消费者问题5.2 进程 首先,生产者进程Pp和消费者进程Pc共享同一个有界缓冲区,对这个缓冲区的操作必须是独占的。这种不允许多个并发进程交叉执行的资源称为临界资源,临界的程序段资源称为临界部分
27、或临界区。临界资源是由于不同并发进程共享某个资源造成的,不可能通过增加资源的方法解决。这种因为共享某一公有资源而引起的在临界资源内不允许并发进程交叉执行的现象,称为进程间的间接约束。由于对临界资源的共享,而产生了临界区问题。对于有着临界区问题的并行进程之间必须互斥,以保证不会同时进入临界区。5.2 进程其次,对生产者进程Pp和消费者进程Pc访问共享有界缓冲区的顺序有严格的要求。具体来讲,这种限制为:(1)消费者进程Pc要接收数据时,有界缓冲区必须至少有一个单元是满的;(2)生产者进程Pp要发送数据时,有界缓冲区必须至少有一个单元是空的。这样存在一组相互独立的并发进程,各自的执行结果互为对方的执
28、行条件,从而限制各进程执行速度的过程,称为进程间的直接制约。存在直接制约关系,相互发送消息进行互相合作、互相等待,各自按照一定的速度向前推进的过程称为同步。5.2 进程 消费者进程和生产者进程之间因为共享缓冲区,相互竞争而间接制约,具有互斥关系,同时相互以对方的运行结果为条件而直接制约,也具有同步的关系,是一对同时具有竞争和合作的进程。在并发系统中,进程之间相互制约,具有同步和互斥是相当普遍的现象。这种进程之间的相互关系,依靠单个进程自身的力量是无法解决的,必须以进程间的相互通信为基础,互相发送信息,才能协调解决。具体的同步、互斥实现方案有很多种,分别基于不同的通信方式。5.2 进程5.2.6
29、 进程通信进程间通信是协调解决多个进程之间的约束关系,实现进程共同进展的关键技术,是多道系统中控制进程并发执行必不可少的机制。进程间的通信有两种方式:一是互相发送少量的控制信息,一般只传递一个或者几个字节的数据,进程利用这些简单的信息,实现互斥和同步,控制运行速度,这种简单的通信方式被称为进程间的低级通信;另外一种方式称为进程间的高级通信,基本不涉及进程执行速度控制,用来在进程之间传递大量的信息,由于这种通信方式主要用于交换信息,因此,在开发本地进程间通信的同时,也为远程进程间的通信,和计算机网络的开发及控制奠定了基础。5.2 进程1.进程通信类型 按照通信进程双方的地位,可以把进程通信分为:
30、主从式、会话式、消息或邮箱机制以及共享存储区四种类型。(1)主从式 主进程一方在整个通信过程中处于绝对的控制地位,它可以直接控制从进程的动作,自由地使用从进程的资源和数据。(2)会话式 一方进程提供服务,另外一方进程在得到服务方的许可之后,可以使用其提供的服务。在通信过程中,双方的连接关系固定,客户进程提出服务请求,服务进程根据情况控制服务的状态和内容。5.2 进程(3)消息或邮箱机制 通信双方具有平等的地位,和现实生活中的邮件类似。通信双方通过缓冲区或邮箱存放被传送的数据,不需要建立双方直接的连接关系。申请通信的发起方进程不管接收方进程的状态,把信息直接送入双方共享的缓冲区(或者邮箱)中,接
31、收进程在合适的时机去读取缓冲区(或者邮箱)以接收信息。(4)共享存储区 共享存储区通信方式中,通信双方进程共享内存中的一段存储空间,共同操作这个存储区,达到数据共享的目的。通信过程中,数据一直存放在共享存储区中,不需要移动,因此特别适用于大量数据的传递。5.2 进程2.Linux系统的进程通信 Linux系统提供了多种通信机制,利用这些机制,可以方便地进行进程之间的相互协调,实现进程的互斥和同步。(1)信号(signal)信号属于Linux系统的低级通信,主要用于在进程之间传递控制信号。信号可以发给一个或多个进程,可以是由某个进程发出,也可以由键盘中断产生,还可以是由shell程序向其子进程发
32、送任务控制命令时产生。进程在某些系统错误环境下也会有信号产生。5.2 进程 除了两个信号外,进程可以忽略这些信号中的绝大部分,这两个信号是引起进程终止执行的SIGSTOP信号和引起进程退出的SIGKILL信号。至于其他信号,进程可以选择处理它们的具体方式。信号没有固有的相对优先级。并不是系统中每个进程都可以向所有其他进程发送信号,只有核心和超级用户具有此权限。普通进程只能向具有相同uid和gid的进程或者在同一进程组中的进程发送信号。信号是通过设置task-struct结构中signal域里的某一位来产生的。如果进程没有阻塞信号并且处于可中断的等待状态,则可以将其状态改成running,若确认
33、进程还处在运行队列中,就可以通过信号唤醒它。5.2 进程(2)管道(pipe)管道是UNIX操作系统传统的进程通信技术。Linux管道通信包括无名管道和有名管道两种,通过文件系统来实现。管道也是一种特殊的文件类型,实际上是通过文件系统的高速缓冲实现的。两个进程通过管道进行通信时,两个进程分别进行读和写操作,都指向缓冲区中同样的物理单元,一个进程写入数据,另一个进程从缓冲区中读取数据,从而实现信息传递。管道方式只能按照先进先出方式单向传递信息。管道方式可以用来进行大规模的数据传递。5.2 进程(3)SYSTEM 进程间通信 信号量、消息队列和共享内存是UNIX/Linux系统常用的通信方式。消息
34、队列用来在进程之间传递分类的格式化数据,共享内存方式可以使不同进程共同访问一块虚拟存储空间,通过对该存储区的共同操作来实现数据传递,信号量主要用于进程之间的同步控制,通常和共享内存共同使用。这三种方式在系统中是作为一个整体实现的。共享内存是这三种方式中通信效率最高的,它在进程的虚拟空间中进行,而且不需要数据的移动也可以实现大规模的数据传递。5.2 进程(4)套接字(socket)套接字是用来通过网络实现运行于不同计算机上的进程之间通信的机制。它可以实现数据的双向规模传递,是整个网络通信的基础。具体的原理和实现与网络协议等有关,不做具体的介绍。5.2 进程5.2.7 死锁 死锁,是指所有并发进程
35、都拥有部分资源,同时都在等待其他进程拥有的资源,而且在得到对方资源之前不会释放自己占有的资源,所有进程都进入永久等待状态而无法运行的情况。死锁是并发进程约束关系处理不当造成的最严重的后果,是对系统资源极大的浪费,必须设法避免。死锁出现的根本原因是系统资源的有限性。并发进程竞争资源,调度不当,就可能出现死锁的情况,因此必须采取适当的措施来消除死锁。产生死锁的必要条件有四个:并发进程之间是互斥关系,每个进程必须独占某个系统资源;进程占有的资源在未结束使用之前,不能被强行剥夺,只能由该进程自己释放;进程需要的资源采用部分分配的方式,在等待新资源的5.2 进程同时,继续占有已分配的资源;各占有资源的进
36、程形成环路,每一个进程已获得的资源同时被下一个进程请求。解决死锁的方案就是破坏死锁产生的必要条件。方法分为预防、回避、检测恢复三种。预防指采取某种策略,控制并发进程对资源的请求,保证死锁的四个必要条件在系统运行的任何时刻都无法满足。避免指系统采取某种算法,对资源使用情况进行预测,使资源分配尽可能合理,避免死锁的发生。这两种方法需要大量的系统开销,而且系统的资源也无法得到充分的利用。因此,一般系统都采取检测恢复的方法,这种方法是在死锁发生之后,根据系统情况,检测死锁发生的位置和原因,使用外力,重新分配资源,破坏死锁发生的条件,系统就可以从死锁状态恢复正常运行,这样的方法只要使用少量的系统资源,尤
37、其是CPU时间就可以排除死锁。5.2 进程多道处理系统中,进程是系统调度和资源分配的基本单位,计算机的CPU不停地在不同进程之间切换,进程切换现场称为进程上下文,每一次切换过程,系统都要对换出进程的上下文做详细记录,然后恢复换入进程的上下文。因此,系统的进程管理过程要耗费相当多的系统资源和CPU时间,尤其是对于需要频繁进程切换的任务。针对进程切换的时间和资源耗费问题,为了减少系统进程切换的时间,提高整个系统的效率,引入了线程的概念。5.3 线程5.3.1 线程的概念 线程是在一个进程内的基本调度单位。线程可以看作是一个执行流,拥有记录自己状态和运行现场的少量数据(栈段和上下文),但没有单独的代
38、码段和数据段,而是与其他线程共享。多个线程共享一个进程内部的各种资源,分别按照不同的路径执行,同时线程也是一个基本调度单位,可以在一个进程内部进行线程切换,现场保护工作量小。一方面通过共享进程的基本资源而减轻系统开销,另一方面提高了现场切换的效率,因此,线程也被称为轻权进程或轻量级进程。许多流行的多任务操作系统基本都支持线程。5.3 线程 按照系统的管理策略,线程可以分为用户级线程和系统级线程(内核级线程)两种基本类型。用户级线程指不需要内核支持,在用户程序中实现的线程都需要用户程序自己完成。系统级线程由内核完成线程的调度并提供相应的系统调用,用户程序可以通过这些接口函数对线程进行一定的控制和
39、管理。用户级线程不需要额外的内核开销,一般只要提供一个线程库即可,剩下的工作就主要由用户自己负责了。但是由于用户级线程与系统内核无关,当一个进程因I/O而被调度程序切换为等待状态时,属于该进程的某个执行线程可能仍然处于执行状态。系统级线程的调度由内核完成,不需要更多用户干预,但要占用更多的系统开销,效率相对低一些。5.3 线程 线程也是系统中动态变化的实体,它描述程序的运行活动,在内存中需要记录。线程的记录信息要保证系统能够准确地进行线程切换。在线程的生命周期里,线程作为一个基本的执行单位而存在,不断地在执行和停止的状态之间转换。线程的基本状态是执行、就绪和等待。线程的同步是一个相当关键的问题
40、。线程之间的通信相对容易,而线程间的同步问题需要更仔细地对待,特别是用户级线程,这个问题相当突出。5.3 线程5.3.2线程和进程 进程是操作系统资源分配和系统调度的基本单位,每一个进程都有自己独立的地址空间和各种资源,线程也是一种系统调度的基本单位,多个线程可以共享一个进程的资源,在存储方面,线程占用的资源更少。进程的调度主要由操作系统完成,而线程根据其类型的不同,可以由系统调度(内核级线程),也可以由用户进行调度(用户级线程)。5.3 线程 进程调度的过程中要进行切换,切换现场的保护与恢复要求对进程上下文做完整的记录,要消耗一定的存储资源和处理机时间;线程共享进程的资源,可以在进程内部切换
41、,不涉及资源保存和内存地址变换等操作,可以节约大量的空间和时间资源。因此,对于切换频繁的工作任务,多线程方式比多进程方式可以提供更高的响应速度。多个线程共享同一进程的资源,线程相互间通讯容易。而进程间通讯一般必须要通过系统提供的进程间通讯机制。进程和线程都是用来描述程序的运行活动,是存在于系统存储区中的动态实体,都有自己的状态,整个生命周期都在不同的状态之间切换。5.3 线程5.3.3 Linux系统的线程Linux可以同时支持内核级线程(也称为系统级线程)和用户级线程。Linux的系统级线程在表示格式、管理调度等方面与进程没有严格的区分,都是当作进程来统一对待。Linux系统级线程和进程的区
42、别主要在于资源管理方面,线程可以共享父进程的部分资源(执行上下文)。在Linux系统中,线程共享资源的类型是可以控制的,系统调用clone里有五种形式的clone:CLONE-VM(存储空间),CLONE-FILES(文件描述表),CLONE-FD(文件系统信息),CLONE-SIGHAND(信号控制表),CLONE-PID(进程号)。5.3 线程 Linux的内核级线程和其他操作系统的内核实现不同。大多数操作系统单独定义描述线程的数据结构,采用独立的线程管理方式,提供专门的线程调度,这些都增加了内核和调度程序的复杂性。而在Linux中,将线程定义为“执行上下文”,它实际只是进程的另外一个执行
43、上下文而已,和进程采用同样的表示、管理、调度方式。这样,Linux内核并不需要区分进程和线程,只需要一个进程/线程数组,而且调度程序也只有进程的调度程序,内核的实现相对简单得多,而且节约系统的用于管理方面的时间开销。但是,Linux系统使用相对复杂的进程控制块来记录信息,而线程本身的控制信息很少,完全可以采用相当简单的线程控制块数据结构,这就造成了内存空间的一定浪费。5.3 线程 一个值得注意的问题是,在Linux系统中,专门有一种称为kernel threads的线程,直译为内核线程,它和我们这里讨论的系统级线程(kernel level threads)在Linux系统中是两个完全不同的概
44、念,它们的区别,将在4.3节“Linux进程调度”中详细介绍。Linux支持POSIX标准定义的线程(pthreads),提供用户级线程支持。利用这样的线程库函数,用户可以方便地创建、调度和撤销线程,也可以实现线程间通信,而且这些线程还可以映射为系统级线程,由系统调度执行。实现用户级线程创建的函数是pthread-create。5.3 线程 进程是现代操作系统的核心概念,它用来描述程序执行的过程,是实现多道操作系统的基础。和进程联系密切的概念是程序、作业和线程,正确地区分和理解这些概念,有助于正确地理解和认识计算机操作系统本身。Linux系统中基本没有区分进程和线程,它们都使用相同的描述方法,
45、使用相同的调度和管理策略。描述进程的静态数据是进程控制块PCB。在Linux等多道操作系统中,程序是并发执行的,进程的个数总是多于系统CPU的个数,宏观上所有进程同时都在运行,微观上这些进程轮流使用CPU,在执行、等待和就绪等基本状态之间转换,直到执行完成。5.4 小结1 什么是作业?简述Linux系统作业的概念。2 作业、程序和进程有什么区别?3 进程能不能理解为由伪处理机执行的一个程序?为什么?4 什么是进程间的互斥和同步?5 并发进程间的制约有哪几种?引起的原因分别是什么?6 Linux系统中的线程有哪几类?分别是如何描述和管理的?7 访问Internet,了解Linux系统进程控制块的现状,有哪些改进,你认为改进方案如何?5.5 习题