1、14141 1整式的乘法整式的乘法141.4整式的乘法整式的乘法(4课时课时)第第2课时多项式乘多项式课时多项式乘多项式经历探索多项式乘法法则的过程,理解多项式乘法法则,灵活运用多项式乘以多项式的运算法则重点多项式乘法的运算难点探索多项式乘法的法则,注意多项式乘法的运算中“漏项”、“负号”的问题一、情境导入教师引导学生复习单项式多项式运算法则整式的乘法实际上就是:单项式单项式;单项式多项式;多项式单项式组织讨论:问题为了扩大街心花园的绿地面积,把一块原长a m,宽p m的长方形绿地,加长了b m,加宽了q m你能用几种方法求出扩大后的绿地面积?如何计算?小组讨论,你从计算过程中发现了什么?由于
2、(ab)(pq)和(apaqbpbq)表示同一个量,即有(ab)(pq)apaqbpbq.二、探索新知(一)探索法则根据乘法分配律,我们也能得到下面等式:在学生发言的基础上,教师总结多项式与多项式的乘法法则并板书法则让学生体会法则的理论依据:乘法对加法的分配律多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加(二)例题讲解与巩固练习1教材例6计算:(1)(3x1)(x2);(2)(x8y)(xy);(3)(xy)(x2xyy2)练习点评:根据学生的具体情况,教师可选择其中几题,分析并板书示范,其余几题,可由学生独立完成在讲解、练习过程中,提醒学生对法则的灵活、正
3、确应用,注意符号,不要漏乘注意一定要用第一个多项式的每一项依次去乘第二个多项式的每一项,在计算时要注意多项式中每个单项式的符号三、课堂小结指导学生总结本节课的知识点,学习过程的自我评价主要针对以下方面:1多项式多项式2多项式与多项式的乘法用一个多项式中的每项乘另一个多项式的每一项,不要漏项在没有合并同类项之前,两个多项式相乘展开后的项数应是这两个多项式项数之积四、布置作业教材第102页练习题本节课由计算绿地面积出发,通过几种不同的计算图形面积方法,得出多项式相乘的法则,整个教学过程的主线和重点定在学生如何自主地探索多项式乘法法则的过程以及如何熟练运用法则解决问题,充分调动了学生学习的积极性教师
4、不仅是教给学生知识,还要重视学习方法的指导和培养14142 2乘法公式乘法公式142.2完全平方公式完全平方公式1完全平方公式的推导及其应用2完全平方公式的几何解释重点完全平方公式的推导过程、结构特点、几何解释,灵活应用难点理解完全平方公式的结构特征,并能灵活应用公式进行计算一、复习引入你能列出下列代数式吗?(1)两数和的平方;(2)两数差的平方你能计算出它们的结果吗?二、探究新知你能发现它们的运算形式与结果有什么规律吗?引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不急于概括;举例:(1)(p1)2(p1)(p1)_;(2)(p1)2(p1)(p1)_;(3)(m2)2_;
5、(4)(m2)2_通过几个这样的运算例子,让学生观察算式与结果间的结构特征归纳:公式(ab)2a22abb2(ab)2a22abb2语言叙述:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍这两个公式叫做(乘法的)完全平方公式教师可以在前面的基础上继续鼓励学生发现这个公式的一些特点:如公式左、右边的结构,并尝试说明产生这些特点的原因还可以引导学生将(ab)2的结果用(ab)2来解释:(ab)2a(b)2a22a(b)(b)2a22abb2.2教材例4:运用完全平方公式计算:(1)1022(1002)21002210022210 000400410 404;(2)992(1
6、001)21002210011210 00020019 801.此处可先让学生独立思考,然后自主发言,口述解题思路,可先不给出题目中“运用完全平方公式计算”的要求,允许他们算法的多样化,但要求明白每种算法的局限和优越性四、再探新知1现有下图所示三种规格的卡片各若干张,请你根据二次三项式a22abb2,选取相应种类和数量的卡片,尝试拼成一个正方形,并讨论该正方形的代数意义:2你能根据下图说明(ab)2a22abb2吗?第1小题由小组合作共同完成拼图游戏,比一比哪个小组快?第2小题借助多媒体课件,直观演示面积的变化,帮助学生联想代数恒等式:(ab)2a2b22b(ab)a22abb2.六、巩固拓展
7、教材例5:运用乘法公式计算:(1)(x2y3)(x2y3);(2)(abc)2.解:(1)(x2y3)(x2y3)x(2y3)x(2y3)x2(2y3)2x2(4y212y9)x24y212y9;(2)(abc)2(ab)c2(ab)22(ab)cc2a22abb22ac2bcc2a2b2c22ab2ac2bc.讲解此例之前可先让学生自学教材第111页的“添括号法则”并完成教材第111页练习第1题然后给出例5题目,让学生思考选择哪个公式第(1)小题的解决关键是要引导学生比较两个因式的各项符号,分别找出符号相同及相反的项,学会运用整体思想,将其与公式中的字母a,b对照,其中2y3(2y3),故应
8、运用平方差公式第(2)小题可将任意两项之和看作一个整体,然后运用完全平方公式在解此例的过程中,应注意边辩析各项的符号特征,边对照两个公式的结构特征,教师应完整详细地书写解题过程,帮助学生理解这一公式的拓展应用,突破难点七、课堂小结谈一谈:你对完全平方公式有了哪些认识?它与平方差公式有什么区别和联系?作业:教材第112页习题14.2第2题,第3题的(1)(3)(4),第4题在完全平方公式的探求过程中,学生表现出观察角度的差异:有些学生只是侧重观察某个单独的式子,而不知道将几个式子联系起来看;有些学生则观察入微,表现出了较强的观察力教师要抓住这个契机,适当对学生进行学法指导对于公式的特点,则应当左
9、右兼顾,特别是公式的左边,它是正确应用公式的前提14142 2乘法公式乘法公式142.2完全平方公式完全平方公式1完全平方公式的推导及其应用2完全平方公式的几何解释重点完全平方公式的推导过程、结构特点、几何解释,灵活应用难点理解完全平方公式的结构特征,并能灵活应用公式进行计算一、复习引入你能列出下列代数式吗?(1)两数和的平方;(2)两数差的平方你能计算出它们的结果吗?二、探究新知你能发现它们的运算形式与结果有什么规律吗?引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不急于概括;举例:(1)(p1)2(p1)(p1)_;(2)(p1)2(p1)(p1)_;(3)(m2)2_;
10、(4)(m2)2_通过几个这样的运算例子,让学生观察算式与结果间的结构特征归纳:公式(ab)2a22abb2(ab)2a22abb2语言叙述:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍这两个公式叫做(乘法的)完全平方公式教师可以在前面的基础上继续鼓励学生发现这个公式的一些特点:如公式左、右边的结构,并尝试说明产生这些特点的原因还可以引导学生将(ab)2的结果用(ab)2来解释:(ab)2a(b)2a22a(b)(b)2a22abb2.2教材例4:运用完全平方公式计算:(1)1022(1002)21002210022210 000400410 404;(2)992(1
11、001)21002210011210 00020019 801.此处可先让学生独立思考,然后自主发言,口述解题思路,可先不给出题目中“运用完全平方公式计算”的要求,允许他们算法的多样化,但要求明白每种算法的局限和优越性四、再探新知1现有下图所示三种规格的卡片各若干张,请你根据二次三项式a22abb2,选取相应种类和数量的卡片,尝试拼成一个正方形,并讨论该正方形的代数意义:2你能根据下图说明(ab)2a22abb2吗?第1小题由小组合作共同完成拼图游戏,比一比哪个小组快?第2小题借助多媒体课件,直观演示面积的变化,帮助学生联想代数恒等式:(ab)2a2b22b(ab)a22abb2.六、巩固拓展
12、教材例5:运用乘法公式计算:(1)(x2y3)(x2y3);(2)(abc)2.解:(1)(x2y3)(x2y3)x(2y3)x(2y3)x2(2y3)2x2(4y212y9)x24y212y9;(2)(abc)2(ab)c2(ab)22(ab)cc2a22abb22ac2bcc2a2b2c22ab2ac2bc.讲解此例之前可先让学生自学教材第111页的“添括号法则”并完成教材第111页练习第1题然后给出例5题目,让学生思考选择哪个公式第(1)小题的解决关键是要引导学生比较两个因式的各项符号,分别找出符号相同及相反的项,学会运用整体思想,将其与公式中的字母a,b对照,其中2y3(2y3),故应
13、运用平方差公式第(2)小题可将任意两项之和看作一个整体,然后运用完全平方公式在解此例的过程中,应注意边辩析各项的符号特征,边对照两个公式的结构特征,教师应完整详细地书写解题过程,帮助学生理解这一公式的拓展应用,突破难点七、课堂小结谈一谈:你对完全平方公式有了哪些认识?它与平方差公式有什么区别和联系?作业:教材第112页习题14.2第2题,第3题的(1)(3)(4),第4题在完全平方公式的探求过程中,学生表现出观察角度的差异:有些学生只是侧重观察某个单独的式子,而不知道将几个式子联系起来看;有些学生则观察入微,表现出了较强的观察力教师要抓住这个契机,适当对学生进行学法指导对于公式的特点,则应当左右兼顾,特别是公式的左边,它是正确应用公式的前提