1、 前一节,我们学习了一元线性回归分析问题,在实前一节,我们学习了一元线性回归分析问题,在实际应用中,有些变量之间并不是线性相关关系,但可以际应用中,有些变量之间并不是线性相关关系,但可以经过适当的变换,把非线性回归问题转化为线性回归问经过适当的变换,把非线性回归问题转化为线性回归问题。题。可线性化的一元非线性回归可线性化的一元非线性回归 常见的几种变换形式:常见的几种变换形式:1、双曲线、双曲线 1bayx11,yxyxyabx令令 2、幂函数曲线、幂函数曲线 byaxln,ln,lnyy xx aayabx令令 化非线性回归为线性回归化非线性回归为线性回归 变形变形 lnlnlnyabx3、
2、指数函数曲线、指数函数曲线 bxyaeln,lnyy aayabx令令 变形变形 lnlnyabx4、负指数函数曲线、负指数函数曲线 bxyae1ln,lnyy xaaxyabx令令 化非线性回归为线性回归化非线性回归为线性回归 变形变形 lnlnbyax5、对数函数曲线、对数函数曲线 lnyabxlnxxyabx令令 6、S型(型(Logistic)曲线)曲线 1xKyAeln,lnKyyaAyyax令令 化非线性回归为线性回归化非线性回归为线性回归 变形变形 (1)xxyAeKyAyeKlnlnxKyKyAeAxyy例例1 测定某肉鸡的生长过程,每两周记录一次鸡的重量,测定某肉鸡的生长过程
3、,每两周记录一次鸡的重量,数据如下表数据如下表x/周24681012y/kg0.30.861.732.22.472.67由经验知鸡的生长曲线为由经验知鸡的生长曲线为Logistic曲线,且极限生长量曲线,且极限生长量为为k=2.827,试求,试求y对对x的回归曲线方程。的回归曲线方程。解解 由题设可建立鸡重由题设可建立鸡重y与时间与时间x的相关关系为的相关关系为 2.8271xyAe2.827ln,lnyyaAyyax令令 则有则有 列表计算列表计算 序号序号xyyX2y2xy120.32.13144.5414.262240.860.827160.6843.309361.73-0.456360
4、.208-2.733482.2-1.255641.576-10.0425102.47-1.9341003.741-19.3426122.67-2.8341448.029-34.0037142.8-4.64219621.544-64.982 5613.03-8.16256040.323-123.531所以所以 8.00 x 1.166y 112xxL30.807y yL 58.236xyL 0.519967xyxxLL 2.993762ayx19.96063aAe所以所求曲线方程为所以所求曲线方程为 0.519972.8271 19.9606xye上机操作上机操作 输入原始数据输入原始数据 上机
5、操作上机操作 计算计算 2.827*lnyyy上机操作上机操作 上机操作上机操作 上机操作上机操作 是是y*,而不是,而不是y 自变量自变量 上机操作上机操作 回归方程,还要回代系数回归方程,还要回代系数 多重回归分析多重回归分析 在实际问题中,自变量的个在实际问题中,自变量的个数可能多于一个,随机变量数可能多于一个,随机变量 y y与与多个可控变量多个可控变量x x1 1,x,x2 2,x,x3 3,x,xk k之间之间是否存在相关关系,则属于多重是否存在相关关系,则属于多重(元)回归问题。本节讨论多重(元)回归问题。本节讨论多重线性回归。线性回归。多重线性回归模型多重线性回归模型 随机变量
6、随机变量 与与 之间的线性关系之间的线性关系y12,kx xx01 122kkyxxx(1)其中其中 20,N012,k ,未知未知 则(则(1)式称为多重线性回归模型。)式称为多重线性回归模型。多重线性回归模型多重线性回归模型 若对变量若对变量 与与 分别作分别作n次观测,则可得次观测,则可得一个容量为一个容量为n的子样的子样y12,kx xx01122iiikikiyxxx(2)其中其中 20,(1,2,)iNin012k,为待定参数,称为回归系数。为待定参数,称为回归系数。(2)式含有)式含有k+1个参数,故观测次数应满足个参数,故观测次数应满足nk+1。12,1,2,iiikixxxy
7、in则有则有 多重线性回归模型的矩阵形式多重线性回归模型的矩阵形式 记记 12nyyYy111212122212111kknnnkxxxxxxXxxx01k12ne则(则(2)有矩阵形式)有矩阵形式 YXe20,eNE其中其中 确定确定 的最小二乘法的最小二乘法 考虑多元函数考虑多元函数 20111niikikiQyxx目标:确定目标:确定 使使 最小最小 01,k Q方法:方法:0,1,2,iQik解得解得 01 122kkyxxx多重线性回归方程多重线性回归方程 线性回归方程的有效性检验线性回归方程的有效性检验方差分析法方差分析法 012:0kH 线性回归方程线性回归方程是否有统计意义,可
8、检验假设是否有统计意义,可检验假设 01 122kkyxxx是否成立是否成立 方法:方差分析法,将总离差平方和分解方法:方差分析法,将总离差平方和分解 222111nnnTiiiiiiiSSyyyyyyRESSSS线性回归方程的有效性检验线性回归方程的有效性检验方差分析法方差分析法 21nRiiSSyy21nEiiiSSyy回归平方和,反映线性关系对观测结果产生的数回归平方和,反映线性关系对观测结果产生的数据波动,据波动,SSR越大,线性相关关系越强。越大,线性相关关系越强。剩余平方和(或残差平方和),反映除线性因素之剩余平方和(或残差平方和),反映除线性因素之外的其它因素对观测结果产生的数据
9、波动,外的其它因素对观测结果产生的数据波动,SSE越大,越大,则其它因素对则其它因素对Y的影响越大。的影响越大。线性回归方程的有效性检验线性回归方程的有效性检验方差分析法方差分析法 221TSSn在在H0成立的条件下,可以证明:成立的条件下,可以证明:22RSSk221ESSnk(n为观测次数,为观测次数,k为自变量个数)为自变量个数)构造构造F统计量统计量 ,11RESSkFF k nkSSnk当当 时,拒绝时,拒绝H0。,1FFk nk回归系数的统计检验回归系数的统计检验 回归方程的有效性检验,只是解决了回归方程的有效性检验,只是解决了 与与之间是否有线性相关关系,至于变量之间是否有线性相
10、关关系,至于变量 对对 的影响是否的影响是否有统计意义,无从看出,因此,还需对回归系数有统计意义,无从看出,因此,还需对回归系数 是否是否为为0作统计检验。作统计检验。y12,kx xxixyi提出假设提出假设 01:0;:0iiHH如果如果H0成立,可以证明统计量成立,可以证明统计量 1(1)iiiETt nkC SSnk当当 时,拒绝时,拒绝H0。21Ttnk2(1)1niik ikCx利用回归方程作预测及控制利用回归方程作预测及控制 对于给定的对于给定的 12,kx xx001 122kkyxxx点估计值点估计值 置信水平为置信水平为 的预测区间为的预测区间为 1102000011TTE
11、SSytXX XXnk例例2 某种水泥在凝固时放出的热量某种水泥在凝固时放出的热量Y(cal/g)与水泥中)与水泥中下列下列4种化学成分有关:种化学成分有关:123:3axc o Al o的成分(的成分(%)22:3axc o Sio的成分(的成分(%)32323:4axc o Al oFe o的成分(的成分(%)42:2axc o Sio的成分(的成分(%)现记录了现记录了13组观测数据,列在下表中,试求组观测数据,列在下表中,试求 对对 的线性回归方程。的线性回归方程。y12,x x34,x x1 1223344yab xb xb xb x编号X1(%)X2(%)X3(%)X4(%)Y(cal/g)172666078.52129155274.331156820104.34113184787.6575263395.961155922109.27371176102.78131224472.59254182293.1102147426115.911140233483.8121166912113.3131068812109.4上机操作上机操作 因变量因变量 自变量自变量 线性方程是有效的线性方程是有效的 线性回归方程线性回归方程