1、学习目标1.会运用勾股定理求线段长及解决简单的实际问题.(重点)2.能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联 系,并进一步求出未知边长.(难点)情景引入数学来源于生活,勾股定理的应用在生活中无处不在,观看下面视频,你们能理解曾小贤和胡一菲的做法吗?导入新课导入新课问题 观看下面同一根长竹竿以三种不同的方式进门的情况,并结合曾小贤和胡一菲的做法,对于长竹竿进门之类的问题你有什么启发?这个跟我们学的勾股定理有关,将实际问题转化为数学问题勾股定理的简单实际应用一讲授新课讲授新课例1 一个门框的尺寸如图所示,一块长3m,宽2.2m的长方形薄木板能否从门框内
2、通过?为什么?2m1mABDC典例精析解:在RtABC中,根据勾股定理,AC2=AB2+BC2=12+22=5 52.24.AC 因为AC大于木板的宽2.2m,所以木板能从门框内通过.分析:可以看出木板横着,竖着都不能通过,只能斜着.门框AC的长度是斜着能通过的最大长度,只要AC的长大于木板的宽就能通过.ABDCO 解:在RtABC中,根据勾股定理得OB2=AB2-OA2=2.62-2.42=1,OB=1.在RtCOD中,根据勾股定理得OD2=CD2-OC2=2.62-(2.4-0.5)2=3.15,3.151.77,OD1.7710.77.BDODOB 梯子的顶端沿墙下滑0.5m时,梯子底端
3、并不是也外移0.5m,而是外移约0.77m.例2 如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m.如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?例3 在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?8 米6米 8 米米6米米ACB解:根据题意可以构建一直角三角形模型,如图.在RtABC中,AC=6米,BC=8米,由勾股定理得22226810.ABACBC米这棵树在折断之前的高度是10+6=16(米).利用勾股定理解决实际问题的一般步骤:(1)读懂题意,分析已知、未知间的关
4、系;(2)构造直角三角形;(3)利用勾股定理等列方程;(4)解决实际问题.归纳总结数学问题直角三角形勾股定理实际问题转化构建利用解决1.湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为()ABCA.50米 B.120米 C.100米 D.130米130120?A练一练CAB2.如图,学校教学楼前有一块长方形长为4米,宽为3米的草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“径路”,却踩伤了花草.(1)求这条“径路”的长;(2)他们仅仅少走了几步(假设2步为1米)?解:(1)在Rt ABC中,根据勾股定理得这条“径路”的长为5米.
5、(2)他们仅仅少走了 (3+4-5)2=4(步).别踩我,我怕疼!22345AB 米,A21-4-3-2-1-12 3145利用勾股定理求两点距离及验证“HL”二例4 如图,在平面直角坐标系中有两点A(-3,5),B(1,2)求A,B两点间的距离.yOx3BC解:如图,过点A作x轴的垂线,过点B作x,y轴的垂线.相交于点C,连接AB.AC=5-2=3,BC=3+1=4,在RtABC中,由勾股定理得A,B两点间的距离为5.225.ABACBC方法总结:两点之间的距离公式:一般地,设平面上任意两点2211222121,.A x yB xyABxxyy则思考思考 在八年级上册中,我们曾经通过画图得到
6、结论:斜边和一条直角边分别相等的两个直角三角形全等学习了勾股定理后,你能证明这一结论吗?已知:如图,在RtABC 和RtA B C 中,C=C=90,AB=A B,AC=A C 求证:ABCA B C A B C ABC 22BCABAC,=-=-证明:在RtABC 和RtA B C 中,C=C=90,根据勾股定理得A B C ABC 22.B CA BA C ,ABAB ACAC .BCB C(SSS).ABCA B C CBA问题 在A点的小狗,为了尽快吃到B点的香肠,它选择A B 路线,而不选择A C B路线,难道小狗也懂数学?AC+CB AB(两点之间线段最短)思考 在立体图形中,怎么
7、寻找最短线路呢?利用勾股定理求最短距离三BAdABAABBAO想一想:蚂蚁走哪一条路线最近?A 蚂蚁AB的路线问题:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,蚂蚁怎么走最近?BA根据两点之间线段最短易知第一个路线最近.若已知圆柱体高为12 cm,底面半径为3 cm,取3.BA3O12侧面展开图 123ABAA 解:在RtABA中,由勾股定理得2222123 315.ABAABA 立体图形中求两点间的最短距离,一般把立体图形展开成平面图形,连接两点,根据两点之间线段最短确定最短路线.归纳例5 有一个圆柱形油罐,要以A点环绕
8、油罐建梯子,正好建在A点的正上方点B处,问梯子最短需多少米(已知油罐的底面半径是2 m,高AB是5 m,取3)?ABABAB解:油罐的展开图如图,则AB为梯子的最短距离.AA=232=12,AB=5,AB=13.即梯子最短需13米.典例精析数学思想:立体图形平面图形转化展开B牛奶盒A【变式题】看到小蚂蚁终于喝到饮料的兴奋劲儿,小明又灵光乍现,拿出了牛奶盒,把小蚂蚁放在了点A处,并在点B处放上了点儿火腿肠粒,你能帮小蚂蚁找到完成任务的最短路程么?6cm8cm10cmBB18AB2610B3AB12=102+(6+8)2=296,AB22=82+(10+6)2=320,AB32=62+(10+8)
9、2=360,解:由题意知有三种展开方法,如图.由勾股定理得AB1AB2AB3.小蚂蚁完成任务的最短路程为AB1,长为 .2 74例5 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家他要完成这件事情所走的最短路程是多少?牧童A小屋BAC东北解:如图,作出点A关于河岸的对称点A,连接AB则AB就是最短路线.由题意得AC=4+4+7=15(km),BC=8km.在RtADB中,由勾股定理得2215817.A B 求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的
10、线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径.归纳如图,是一个边长为1的正方体硬纸盒,现在A处有一只蚂蚁,想沿着正方体的外表面到达B处吃食物,求蚂蚁爬行的最短距离是多少.AB解:由题意得AC=2,BC=1,在RtABC中,由勾股定理得 AB=AC+BC=2+1=5AB=,即最短路程为 .21ABC55练一练1.从电杆上离地面5m的C处向地面拉一条长为7m的钢缆,则地面钢缆A到电线杆底部B的距离是()A.24m B.12m C.m D.cm 742 6D当堂练习当堂练习2.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12
11、cm,则这只铅笔的长度可能是()A.9cm B.12cm C.15cm D.18cm D3.已知点(2,5),(-4,-3),则这两点的距离为_.104.如图,有两棵树,一棵高8米,另一棵2米,两棵对 相距8米.一只鸟从一棵树的树梢飞到另一棵的树梢,问小鸟至少飞行多少?ABC解:如图,过点A作ACBC于点C.由题意得AC=8米,BC=8-2=6(米),答:小鸟至少飞行10米.2210ABACBC米.5.如图,是一个三级台阶,它的每一级的长、宽和高分别等于55cm,10cm和6cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.这只蚂蚁从A点出发,沿着台阶面爬到B点
12、,最短线路是多少?BAABC解:台阶的展开图如图,连接AB.在RtABC中,根据勾股定理得AB2=BC2AC25524825329,AB=73cm.6.为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图.已知圆筒的高为108cm,其横截面周长为36cm,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?能力提升:解:如右下图,在RtABC中,AC36cm,BC108427(cm)由勾股定理,得AB2AC2BC23622722025452,AB45cm,整个油纸的长为454180(cm)课堂小结课堂小结勾股定理的应用用勾股定理解决 实 际 问 题用勾股定理解决点的距
13、离及路径最短问题解决“HL”判定方法证全等的正确性问题学习目标1.掌握二次根式的混合运算的运算法则.(重点)2.会运用二次根式的混合运算法则进行有关的运算.(难点)导入新课导入新课问题1 单项式与多项式、多项式与多项式的乘法法则法则分别是什么?问题2 多项式与单项式的除法法则是什么?m(a+b+c)=ma+mb+mc;(m+n)(a+b)=ma+mb+na+nb复习引入(ma+mb+mc)m=a+b+c分配律 单多 转化 前面两个问题的思路是:思考 若把字母a,b,c,m都用二次根式代替(每个同学任选一组),然后对比归纳,你们发现了什么?单单 讲授新课讲授新课 二次根式的混合运算及应用一 二次
14、根式的加、减、乘、除混合运算与整式运算一样,体现在:运算律、运算顺序、乘法法则仍然适用.例1 计算:18+3624 23 62 2()();()();解:18+3686+36()()4 3+3 2.24 23 62 24 22 23 62 2()()323.2 二次根式的混合运算,先要弄清运算种类,再确定运算顺序:先乘除,再加减,有括号的要算括号内的,最后按照二次根式的相应的运算法则进行.归纳3(23)(25).()23(23)(25)25 2+3 215()()解:132 2.此处类比“多项式多项式”即(x+a)(x+b)=x2+(a+b)x+ab.(1)32327+63();06(2)20
15、163+312.2()-633 336 解:(1)原式3 3.(2)原式1+2 333 32.【变式题】计算:有绝对值符号的,同括号一样,先去绝对值,注意去掉绝对值后,得到的数应该为正数.归纳例2 甲、乙两个城市间计划修建一条城际铁路,其中有一段路基的横断面设计为上底宽 ,下底宽 ,高 的梯形,这段路基长 500 m,那么这段路基的土石方(即路基的体积,其中路基的体积=路基横断面面积路基的长度)为多少立方米呢?62m42m6m4 2m6m6 2m典例精析解:路基的土石方等于路基横断面面积乘以路基的长度,所以这段路基的土石方为:14 26 265002 23 2650025 2650035000
16、 3 m.答:这段路基的土石方为35000 3m.计算:3 1 6 2 2 2+2 1 28-()();().().3=6228 -3=6 228 -.3=2 323=32 -3 1 6 28()()-2 2+2 1 2 ()()-=2 2 2+222 -=2 2 2+2 2 -.=2 -:解解练一练问题1 整式乘法运算中的乘法公式有哪些?平方差公式:(a+b)(a-b)=a2-b2;完全平方公式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.利用乘法公式进行二次根式的运算二问题2 整式的乘法公式对于二次根式的运算也适用吗?整式的乘法公式就是多项式多项式前面我们已经知道二
17、次根式运算类比整式运算,所以适用哟例3 计算:21(53)(53);(2)(32).()2253()()解:1(53)(53)()532.2(2)(32)223232+2()34 3+474 3.典例精析(3)3 248184 3;32(4).aa babaabab 解:30.3 24 33 24 3(3)3 248184 3223 24 3.baabaababababaab32(4)aa babaabab 进行二次根式的混合运算时,一般先将二次根式转化为最简二次根式,再根据题目的特点确定合适的运算方法,同时要灵活运用乘法公式,因式分解等来简化运算.归纳【变式题】计算:2018201812 2
18、32 23;()()()20172019322-3232.2()()()解:(1)原式20182 232 2+3=()()20181=()1.=(2)原式201723 2-323 2322()()()201717+4 33()7+4 337+3 3.计算:2(1)2 2-1(2)2-35723.;(2)2-35723 2(1)2 2-1 :解解 练一练2-32357 57 222 21 22 21 94 2.57.先用乘法交换律,再用乘法公式化简.求代数式的值三 例3 已知 试求x2+2xy+y2的值.3 1,3 1,xy解:x2+2xy+y2=(x+y)2把 代入上式得3 1,3 1,xy原
19、式=23+1+31()()22 312.()32,32xy解:,x3y+xy3=xy(x2+y2)=xy(x+y)2-2xy32,32xy32322 3,xy 3232321,xy 212 32 110.【变式题】已知 ,求x3y+xy3.用整体代入法求代数式值的方法:求关于x,y的对称式(即交换任意两个字母的位置后,代数式不变)的值,一般先求x+y,xy,x-y,等的值,然后将所求代数式适当变形成知含x+y,xy,x-y,等式子,再代入求值.归纳xyxy在前面我们学习了二次根式的除法法则时,学会了怎样去掉分母的二次根式的方法,比如:575777357拓展探究思考 如果分母不是单个的二次根式,
20、而是含二次根式的式子,如:等,该怎样去掉分母中的二次根式呢?21,32根据整式的乘法公式在二次根式中也适用,你能想到什么好方法吗?例4 计算:141;2.3251()()解:1321132.323232()4514514251.4515151()分母形如 的式子,分子、分母同乘以 的式子,构成平方差公式,可以使分母不含根号.归纳m an bm an b【变式题】已知 ,求 .11,5252ab222ab解:15252,525252a15252,525252b222222ababab2525225252220222 5.解决二次根式的化简求值问题时,先化简已知条件,再用乘法公式变形、代入求值即可
21、.归纳已知 的整数部分是a,小数部分是b,求a2-b2的值.10解:31043,103.ab22ab练一练6 1010.223(103)3103310310610当堂练习当堂练习1.下列计算中正确的是()1A.3(3)33B.(12-27)31 1C.32222D.3(23)62 3B2.计算:22+324.()5 3.设 则a b(填“”“”“”或 “=”).,1103103ab,=4.计算:;11(1)3222(2)23 2-3 ;(1)3222 解:4 222 5 22 5.11(2)23 2-3 2-32323 2-323 2-3 423 2-3 2244.2-3 (3)333-3 ;
22、(4)3102-5 ;22=33 =93=6解:原式.201(5)313+1+-2+83()()().29+1+2 2解:原式6+2 2.5.在一个边长为 cm的正方形内部,挖去一个边长为 cm的正方形,求剩余部分的面积.(6 155 5)(6 155 5)解:由题意得22(6 155 5)(6 155 5)即剩余部分的面积是2600 3cm.(6 155 5)(6 155 5)(6 155 5)(6 155 5)212 15 10 5600 3(cm).6.(1)已知 ,求 的值;31x 223xx解:x2-2x-3=(x-3)(x+1)31331 1 32321.(2)已知 ,求 的值.5
23、151,22xy22xxyy解:51515,22xy51511,22xy2222514.xxyyxyxy 6.阅读下列材料,然后回答问题:在进行类似于二次根式 的运算时,通常有如下两种方法将其进一步化简:231方法一:2231231231;31313131方法二:313123 131.313131能力提升:535325353.535353(1)请用两种不同的方法化简:(2)化简:2;5322253253253;53535353解:(1)1111.4264862018201614264862018201621111(2)42648620182016120182.2课堂小结课堂小结二次根式混合运算乘法公式化简求值分 母 有 理 化化简已知条件和所求代数式 (a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (x+a)(x+b)=x2+(a+b)x+ab