概率与统计学习培训模板课件.ppt

上传人(卖家):林田 文档编号:4142173 上传时间:2022-11-14 格式:PPT 页数:63 大小:1.47MB
下载 相关 举报
概率与统计学习培训模板课件.ppt_第1页
第1页 / 共63页
概率与统计学习培训模板课件.ppt_第2页
第2页 / 共63页
概率与统计学习培训模板课件.ppt_第3页
第3页 / 共63页
概率与统计学习培训模板课件.ppt_第4页
第4页 / 共63页
概率与统计学习培训模板课件.ppt_第5页
第5页 / 共63页
点击查看更多>>
资源描述

1、12(1)理解随机抽样的必要性和重要性;理解随机抽样的必要性和重要性;会用简单随机抽样方法从总体中抽取样本;会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法了解分层抽样和系统抽样方法.3(2)了解分布的意义和作用,会列频率分了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点;理解样本数茎叶图,理解它们各自的特点;理解样本数据标准差的意义和作用,会计算数据标准差;据标准差的意义和作用,会计算数据标准差;能从样本数据中提取基本的数字特征能从样本数据中提取基本的数字特征(如平均如平均数、标准差数、标准

2、差),并作出合理的解释;会用样本,并作出合理的解释;会用样本的频率分布估计总体分布,会用样本的基本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用数字特征估计总体的基本数字特征,理解用样本估计总体的思想;会用随机抽样的基本样本估计总体的思想;会用随机抽样的基本方法和样本估计总体的思想,解决一些简单方法和样本估计总体的思想,解决一些简单的实际问题的实际问题.4(3)会作两个有关联变量数据的散点图,会作两个有关联变量数据的散点图,会利用散点图认识变量间的相关关系;了解会利用散点图认识变量间的相关关系;了解最小二乘法的思想,能根据给出的线性回归最小二乘法的思想,能根据给出

3、的线性回归方程系数公式建立线性回归方程方程系数公式建立线性回归方程.(4)了解独立检验了解独立检验(只要求只要求22列联表列联表)、回、回归分析的基本思想、方法,并能应用这些方归分析的基本思想、方法,并能应用这些方法解决一些实际问题法解决一些实际问题.5(5)了解随机事件发生的不确定性和频率的了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的稳定性,了解概率的意义,了解频率与概率的区别;了解两个互斥事件的概率加法公式区别;了解两个互斥事件的概率加法公式.(6)理解古典概型及其概率计算公式;会用理解古典概型及其概率计算公式;会用列举法计算一些随机事件所含的基本事件数及列举

4、法计算一些随机事件所含的基本事件数及事件发生的概率事件发生的概率(7)了解随机数的意义,能运用模拟方法估了解随机数的意义,能运用模拟方法估计概率;了解几何概型的意义计概率;了解几何概型的意义.6概率与统计是高中数学主干知识,考查概率与统计是高中数学主干知识,考查题型广泛,形式多样,多为容易题和中档题题型广泛,形式多样,多为容易题和中档题.选择题、填空题主要考查互斥事件、古典概选择题、填空题主要考查互斥事件、古典概型、几何概型等概率的求解,考查抽样方法型、几何概型等概率的求解,考查抽样方法的特点以及有关数据的计算、茎叶图与频率的特点以及有关数据的计算、茎叶图与频率分布直方图的识图与计算;解答题中

5、主要以分布直方图的识图与计算;解答题中主要以频率分布表及频率分布直方图为问题情境,频率分布表及频率分布直方图为问题情境,考查统计方法简单的应用,突出考查或然与考查统计方法简单的应用,突出考查或然与必然思想、数据处理能力和应用意识必然思想、数据处理能力和应用意识.7预计预计2011年高考在本章的选择、填空题年高考在本章的选择、填空题考查重点是古典概型、几何概型等概率的求考查重点是古典概型、几何概型等概率的求解,解答题以实际问题作背景设计试题,以解,解答题以实际问题作背景设计试题,以频率分布表及频率分布直方图为问题情境,频率分布表及频率分布直方图为问题情境,通过识图、读表,对数据进行处理,同时结通

6、过识图、读表,对数据进行处理,同时结合古典概型的概率及样本数据的平均数与标合古典概型的概率及样本数据的平均数与标准差,考查数据处理能力及运用概率知识解准差,考查数据处理能力及运用概率知识解决实际问题的能力决实际问题的能力.89101.有有20位同学,编号为位同学,编号为120号,现在号,现在从中抽取从中抽取4人的作文卷进行调查,用系统抽人的作文卷进行调查,用系统抽样方法确定所抽的编号为(样方法确定所抽的编号为()A.5,10,15,20B.26,10,14C.2,4,6,8 D.5,8,11,14 将将20分成分成4个组,每组个组,每组5个号,间个号,间隔等距离为隔等距离为5,选,选A.A11

7、2.甲、乙两位同学参加由学校举办的篮球甲、乙两位同学参加由学校举办的篮球比赛,它们都参加了全部的比赛,它们都参加了全部的7场比赛,平均得场比赛,平均得分均为分均为16分,标准差分别为分,标准差分别为5.09和和3.72,则甲、,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳乙两同学在这次篮球比赛活动中,发挥得更稳定的是(定的是()A.甲甲B.乙乙C.甲、乙相同甲、乙相同D.不能确定不能确定 平均数相同,看谁的标准差小,平均数相同,看谁的标准差小,标准差小的就稳定,选标准差小的就稳定,选B.B123.如图是如图是2010年元年元旦晚会举办的挑战主持旦晚会举办的挑战主持人大赛上,七位评委为人大赛上

8、,七位评委为某选手打出的分数的茎某选手打出的分数的茎叶统计图,去掉一个最叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和高分和一个最低分后,所剩数据的平均数和方差分别为(方差分别为()A.84,484 B.84,16C.85,16D.85,47899446473C13由茎叶图可知,去掉一个最高分和由茎叶图可知,去掉一个最高分和一个最低分后,所剩数据为一个最低分后,所剩数据为84,84,86,84,87,所以平均数为所以平均数为方差方差s2=(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2=1.6,选,选C.易错点:样本方差公式易错点:样本方差公

9、式.8484868487855,15144.某中学高一、高二、高三三个年级的学某中学高一、高二、高三三个年级的学生数分别为生数分别为1500人,人,1200人,人,1000人人.现采用现采用按年级分层抽样的方法抽取部分学生参加社区按年级分层抽样的方法抽取部分学生参加社区活动活动.已知在高一年级抽取了已知在高一年级抽取了75人,则这次活人,则这次活动共抽取了动共抽取了人人.设共抽取了设共抽取了x人,则有人,则有解得解得x=185,填,填185.75150012001000 1500 x ,185155.对某校对某校400名学生的体重名学生的体重(单位:单位:kg)进进行统计,得到如图所示的频率分

10、布直方图,行统计,得到如图所示的频率分布直方图,则学生体重在则学生体重在60kg以上的人数为以上的人数为100.16体 重 在体 重 在 6 0 k g 以 上 的 频 率 为以 上 的 频 率 为(0.040+0.010)5=0.25,所以体重在所以体重在60kg以上的学生人数为以上的学生人数为0.25400=100,填,填100.易错点:频率分布直方图的识图及频易错点:频率分布直方图的识图及频率的计算率的计算.171.常用的抽样方法常用的抽样方法(1)简单随机抽样:简单随机抽样:一般地,设一个总体一般地,设一个总体含有含有N个个体,从中逐个不放回地抽取个个体,从中逐个不放回地抽取n个个个个

11、体作为样本体作为样本(nN),如果每次抽取时总体内的,如果每次抽取时总体内的各个个体被抽到的机会相等,就把这种抽样方各个个体被抽到的机会相等,就把这种抽样方法叫做简单随机抽样法叫做简单随机抽样.最常用的简单随机抽样方法有两种:抽签最常用的简单随机抽样方法有两种:抽签法和随机数表法法和随机数表法.18(2)系统抽样:系统抽样:当总体中的个体比较多当总体中的个体比较多时,首先把总体分成均衡的几个部分,然时,首先把总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分中抽后按照预先定出的规则,从每一部分中抽取一些个体,得到所需要的样本,这种抽取一些个体,得到所需要的样本,这种抽样方法叫做系统抽样

12、样方法叫做系统抽样.(3)分层抽样:分层抽样:一般地,在抽样时,将一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的总体分成互不交叉的层,然后按照一定的比例,从各层独立地取出一定数量的个体,比例,从各层独立地取出一定数量的个体,将各层取出的个体合在一起作为样本,这将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样种抽样方法叫做分层抽样.192.样本估计总体样本估计总体通常我们对总体作出的估计一般分成两通常我们对总体作出的估计一般分成两种:一种是用样本的频率分布估计总体分布,种:一种是用样本的频率分布估计总体分布,另一种是用样本的数字特征另一种是用样本的数字特征(如平均数、标准如平

13、均数、标准差等差等)估计总体的数字特征估计总体的数字特征.3.频率分布直方图频率分布直方图在频率分布直方图中,纵轴表示频率在频率分布直方图中,纵轴表示频率/组组距,每个小长方形的面积表示相应各组的频距,每个小长方形的面积表示相应各组的频率,各小长方形的面积的总和等于率,各小长方形的面积的总和等于1.204.茎叶图当数据是两位有效数字时,用茎叶图当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边效数字,它的中间部分像植物的茎,两边部分像植物茎

14、上长出来的叶子,因此通常部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图把这样的图叫做茎叶图.5.平均数、中位数和众数平均数、中位数和众数(1)平均数:平均数:一组数据的总和除以数据一组数据的总和除以数据的个数所得的商就是平均数的个数所得的商就是平均数.21(2)中位数:中位数:如果将一组数据按从小到大的如果将一组数据按从小到大的顺序依次排列,当数据有奇数个时,处在最中顺序依次排列,当数据有奇数个时,处在最中间的一个数;当数据有偶数个时,处在最中间间的一个数;当数据有偶数个时,处在最中间两个数的平均数,是这组数据的中位数两个数的平均数,是这组数据的中位数.(3)众数:众数:出现次数最多

15、的数出现次数最多的数.若有两个或几若有两个或几个数据出现得最多,且出现的次数一样,这些个数据出现得最多,且出现的次数一样,这些数据都是这组数据的众数;若一组数据中,每数据都是这组数据的众数;若一组数据中,每个数据出现的次数一样多,则认为这组数据没个数据出现的次数一样多,则认为这组数据没有众数有众数.226.样本方差与标准差:样本方差与标准差:设样本数据设样本数据x1,x2,xn的平均数为,称的平均数为,称 和和 为 样为 样本方差与标准差本方差与标准差.2222121()()()nsxxxxxxn s 22212()()()nxxxxxxn 23重点突破:随机抽样重点突破:随机抽样 防疫站对学

16、生进行身体健康调查,按防疫站对学生进行身体健康调查,按性别分层抽样抽取性别分层抽样抽取.某学校学生共有某学校学生共有1600名,抽名,抽取一个容量为取一个容量为200的样本的样本.已知样本中女生比男已知样本中女生比男生少生少10人,则该校的女生人数应是人人,则该校的女生人数应是人.由抽取的由抽取的200人中,女生比男生人中,女生比男生少少10人,可求得女生所抽取的人数人,可求得女生所抽取的人数.结合分层抽结合分层抽样法的定义,进而求得该校的女生人数样法的定义,进而求得该校的女生人数.76024设抽取男生为设抽取男生为x人,抽取女生为人,抽取女生为y人,则人,则x+y=200,且,且x-y=10

17、,故,故y=95,该校,该校的女生人数应是为解题的关的女生人数应是为解题的关键在于分层抽样法的理解键在于分层抽样法的理解.解分层抽样法问题时,必须保证解分层抽样法问题时,必须保证每个个体等可能入样,所有层中每个个体被每个个体等可能入样,所有层中每个个体被抽到的可能性相同抽到的可能性相同.切记,每层样本数量与切记,每层样本数量与每层个体数量的比与这层个体数量与总体容每层个体数量的比与这层个体数量与总体容量的比相等量的比相等.160095760.20025某大型超市销售的乳类商品某大型超市销售的乳类商品有四种:纯奶、酸奶、婴幼儿奶粉、成人奶有四种:纯奶、酸奶、婴幼儿奶粉、成人奶粉,且纯奶、酸奶、婴

18、幼儿奶粉、成人奶粉粉,且纯奶、酸奶、婴幼儿奶粉、成人奶粉分别有分别有30种、种、10种、种、35种、种、25种不同的品牌种不同的品牌.现采用分层抽样的方法从中抽取一个容量为现采用分层抽样的方法从中抽取一个容量为n的样本进行三聚氰胺安全检测,若抽取的的样本进行三聚氰胺安全检测,若抽取的婴幼儿奶粉的品牌数是婴幼儿奶粉的品牌数是7,则,则n=.由由解得解得n=20.2073530103525n,26 重点突破:频率分布直方图重点突破:频率分布直方图 为了解高一学生的体能情况,某校抽为了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得取部分学生进行一分钟跳绳次数测试,将所得数据整理

19、后,画出频率分布直方图(如图所数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为示),图中从左到右各小长方形面积之比为2 4 17 15 9 3,第二小组频数为,第二小组频数为12.27问:问:()第二小组的频率是多少第二小组的频率是多少?样本容样本容量是多少量是多少?()若次数在若次数在110以上以上(含含110次次)为达标,为达标,试估计该校全体高一学生的达标率是多少试估计该校全体高一学生的达标率是多少?小长方形面积比已给,而各小长小长方形面积比已给,而各小长方形面积之和为方形面积之和为1,故可求得各小长方形的面,故可求得各小长方形的面积,即频率;由第二小组频数为

20、积,即频率;由第二小组频数为12,可求得样,可求得样本容量本容量.解答本题可先求得第二小组的频率,解答本题可先求得第二小组的频率,然后根据频数求得样本容量,从而求得达标率然后根据频数求得样本容量,从而求得达标率.28()由于频率分布直方图以面积的由于频率分布直方图以面积的大小反映了数据落在各个小组内的频率大小,大小反映了数据落在各个小组内的频率大小,因此第二小组的频率为因此第二小组的频率为又因为第二小组频率又因为第二小组频率=所以样本容量所以样本容量=40.0824171593 ,第二小组频数第二小组频数样本容量样本容量,第二小组频数第二小组频数第二小组频率第二小组频率12150.0.0829

21、()由图可估计该校高一学生的达标由图可估计该校高一学生的达标率约为率约为故第二小组的频率是故第二小组的频率是0.08,样本容,样本容量是量是150,高一学生达标率是,高一学生达标率是88%.解本题的关键是准确掌握解本题的关键是准确掌握“频率、频数及样本容量频率、频数及样本容量(数据个数总和数据个数总和)之间的关系之间的关系”.171593100%88%24171593 ,30某校高三文科分为四个班某校高三文科分为四个班.高高三数学调研测试后三数学调研测试后,随机地在各班抽取部分学随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列

22、,人数最少的班被抽取了恰好成等差数列,人数最少的班被抽取了22人人.抽取出来的所有学生的测试成绩统计结果的频抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中率分布条形图如图所示,其中120130(包括(包括120分但不包括分但不包括130分)的频率为分)的频率为0.05,此分数,此分数段的人数为段的人数为5人人.31()问各班被抽取的学生人数各为多少人问各班被抽取的学生人数各为多少人?()在抽取的所有学生中,任取一名学生,在抽取的所有学生中,任取一名学生,求分数不小于求分数不小于90分的概率分的概率.32()由频率分布条形图知,抽取的由频率分布条形图知,抽取的学生总数为学生总

23、数为 =100人人.因为各班被抽取的学生人数成等差数列,因为各班被抽取的学生人数成等差数列,设其公差为设其公差为d,由由22+(22+d)+(22+2d)+(22+3d)=100,得,得422+6d=100,解得,解得d=2.所以各班被抽取的学生人数分别是所以各班被抽取的学生人数分别是22人,人,24人,人,26人,人,28人人.()在抽取的学生中,任取一名学生,则在抽取的学生中,任取一名学生,则分数不小于分数不小于90分的概率为分的概率为0.35+0.25+0.1+0.05=0.75.50.0533 重点突破:用样本的数字特征估计总重点突破:用样本的数字特征估计总体的数学特征体的数学特征 某

24、公司的某公司的33名职工的月工资(以元名职工的月工资(以元为单位)如下:为单位)如下:职务职务董 事董 事长长副 董副 董事长事长董事董事总 经总 经理理经理经理管 理管 理员员职员职员人数人数11215320工资工资550050003500300025002000150034()求该公司职工月工资的平均数、中位求该公司职工月工资的平均数、中位数、众数;数、众数;()假设董事长的工资从假设董事长的工资从5500元提升到元提升到30000元,副董事长的工资从元,副董事长的工资从5000元提升到元提升到20000元,那么新的平均数、中位数、众数又元,那么新的平均数、中位数、众数又是什么是什么?(精

25、确到元精确到元)()你认为哪个统计量更能反映这个公司你认为哪个统计量更能反映这个公司员工的工资水平员工的工资水平?结合此问题谈一谈你的看法结合此问题谈一谈你的看法.解答本题先用公式求出平均数,解答本题先用公式求出平均数,再写出中位数和众数,然后根据平均数、中位再写出中位数和众数,然后根据平均数、中位数、众数的特征解决第数、众数的特征解决第(3)问问.35 ()平均数为平均数为中位数是中位数是1500元,众数是元,众数是1500元元.55005000235003000525003200020 150033 x 69002091()33元元,36()新平均数为新平均数为中位数是中位数是1500元,

26、众数是元,众数是1500元元.30000200002 350030005 25003 200020 150033 x 1085003288()33元元,37()在这个问题中,中位数或众数均能反在这个问题中,中位数或众数均能反映该公司员工的工资水平映该公司员工的工资水平.因为公司中少数人的因为公司中少数人的工资额与大多数人的工资额差别较大,这样导工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平反映这个公司员工的工资水平.由于平均数受极端值影响较大,故由于平均数受极端值影响较大,故有时平均数不一定能客

27、观地反映总体情况有时平均数不一定能客观地反映总体情况.本题本题易误认为职工工资的平均水平能代表多个员工易误认为职工工资的平均水平能代表多个员工工资的基本水平工资的基本水平.应深刻理解平均数、众数、中应深刻理解平均数、众数、中位数的特点,结合实际情况灵活运用位数的特点,结合实际情况灵活运用.38甲、乙两位学生参加数学竞甲、乙两位学生参加数学竞赛培训,在活动期间,他们参加的赛培训,在活动期间,他们参加的5次测试成次测试成绩记录如下:绩记录如下:甲甲8282799587;乙乙9575809085.()用茎叶图表示这两组数据;用茎叶图表示这两组数据;()若要从中选派一人参加数学竞赛,从若要从中选派一人

28、参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参统计学的角度考虑,你认为选派哪位学生参加合适?说明理由加合适?说明理由.39()作出的茎叶图如下作出的茎叶图如下40()派甲参赛比较合适派甲参赛比较合适.理由如下:理由如下:甲甲=(701+803+901+9+2+2+7+5)=85,乙乙=(701+802+902+5+0+5+0+5)=85=(79-85)2+(82-85)2+(82-85)2+(87-85)2+(95-85)2=31.6,15xx152s甲甲1541=(75-85)2+(80-85)2+(85-85)2+(90-85)2+(95-85)2=50,因为因为甲甲=乙乙,P1,

29、所以派乙学生参赛比较合适所以派乙学生参赛比较合适.253543在某电脑杂志的一篇文章中,每个在某电脑杂志的一篇文章中,每个句子的字数如下:句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17.在某报纸的一篇文章中,每个句子中所在某报纸的一篇文章中,每个句子中所含的字的个数如下:含的字的个数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22.44()将这两组数据用茎叶图表示;将这两组数据用茎叶图表示;()将这两组数据进

30、行比较分析,得到什将这两组数据进行比较分析,得到什么结论么结论?()如图所示如图所示45()电脑杂志上每个句子的字数集中在电脑杂志上每个句子的字数集中在1030之间,中位数为之间,中位数为27;而报纸上每个句;而报纸上每个句子的字数集中在子的字数集中在1040之间之间.中位数为中位数为27.5.还可以看出电脑杂志上每个句子的平均字数还可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少比报纸上每个句子的平均字数要少.说明电说明电脑杂志作为科普读物须通俗易懂、简明脑杂志作为科普读物须通俗易懂、简明.461.频率分布表的制作步骤是:频率分布表的制作步骤是:第一步:第一步:按确定的组距

31、对一批数据分按确定的组距对一批数据分组,数出落在各组内数据的个数组,数出落在各组内数据的个数(即频数即频数)填入表中;填入表中;第二步;第二步;各小组的频数与数据总数的各小组的频数与数据总数的比值叫做这一小组的频率,算出各小组的比值叫做这一小组的频率,算出各小组的频率,填入表中;频率,填入表中;472.画频率分布直方图的步骤:画频率分布直方图的步骤:求极差;求极差;决定组距与组数;决定组距与组数;将数据分组;将数据分组;列频率列频率分布表;分布表;画频率分布直方图画频率分布直方图.3.众数、中位数与平均数的特征众数、中位数与平均数的特征(1)众数、中位数及平均数都是描述一组数众数、中位数及平均

32、数都是描述一组数据集中趋势的量,平均数是最重要的量据集中趋势的量,平均数是最重要的量.(2)由于平均数与每一个样本数据有关,所由于平均数与每一个样本数据有关,所以,任何一个样本数据的改变都会引起平均数以,任何一个样本数据的改变都会引起平均数的改变,这是中位数、众数都不具有的性质的改变,这是中位数、众数都不具有的性质.48(3)众数考查各数据出现的频率,大小众数考查各数据出现的频率,大小只与这组数据中的部分数据有关,当一组只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数据中有不少数据多次重复出现时,其众数往往更能反映问题数往往更能反映问题.(4)中位数仅与数据的排列位置

33、有关,中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响某些数据的变动对中位数没有影响.中位数中位数可能出现在所给数据中,也可能不在所给可能出现在所给数据中,也可能不在所给数据中数据中.当一组数据中的个别数据变动较大当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势时,可用中位数描述其集中趋势.494.方差的特征方差和标准差描述其波动方差的特征方差和标准差描述其波动大小,也可以说方差、标准差和极差反映大小,也可以说方差、标准差和极差反映各个数据与其平均数的离散程度各个数据与其平均数的离散程度.一组数据一组数据的方差或标准差越大,说明这组数据波动的方差或标准差越大,说明这组数据

34、波动越大越大.501.(2009山东卷)山东卷)某工厂对一批产品进某工厂对一批产品进行了抽样检测行了抽样检测.下图是根据抽样检测后的产品下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是其中产品净重的范围是96,106,样本数,样本数据分组为据分组为96,98),),98,100),),100,102),),102,104),),104,106.已知样已知样本中产品净重小于本中产品净重小于100克的个数是克的个数是36,则样本,则样本中净重大于或等于中净重大于或等于98克并且小于克并且小于104克的产品克的产品的个

35、数是(的个数是()A51A.90B.75C.60D.45 52产品净重小于产品净重小于100克的概率为克的概率为(0.050+0.100)2=0.300,已知样本中产品已知样本中产品净重小于净重小于100克的个数是克的个数是36,设样本容量为设样本容量为n,则则=0.300,所以,所以n=120,净重大于或等,净重大于或等于于98克并且小于克并且小于104克的产品的概率为克的产品的概率为(0.100+0.150+0.125)2=0.75,所以样本,所以样本中净重大于或等于中净重大于或等于98克并且小于克并且小于104克的产克的产品的个数是品的个数是1200.75=90.选选A.36n53试题以

36、频率分布直方图为背景,试题以频率分布直方图为背景,通过读图、识图,考查数据处理能力和应用通过读图、识图,考查数据处理能力和应用意识意识.解答本题的关键在于灵活、准确从图解答本题的关键在于灵活、准确从图形中提取相关的信息,从而使问题得到解决形中提取相关的信息,从而使问题得到解决.542.(2009宁夏宁夏/海南卷海南卷)某工厂有工人某工厂有工人1000名,名,250名工人参加过短期培训名工人参加过短期培训(称为称为A类工人类工人)另外另外750名工人参加过长期培训名工人参加过长期培训(称为称为B类工人类工人).现用分层抽样方法现用分层抽样方法(按按A类,类,B类分二层类分二层)从该从该工厂的工人

37、中共抽查工厂的工人中共抽查100名工人,调查他们的名工人,调查他们的生产能力生产能力(生产能力指一天加工的零件数生产能力指一天加工的零件数).()求甲、乙两工人都被抽到的概率,其求甲、乙两工人都被抽到的概率,其中甲为中甲为A类工人,乙为类工人,乙为B类工人;类工人;()从从A类工人中的抽查结果和从类工人中的抽查结果和从B类工类工人中的抽查结果分别如表人中的抽查结果分别如表1和表和表2.55表表1:生产能生产能力分组力分组100,110)110,120)120,130)130,140)140,150)人数人数48x53表表2:生产能生产能力分组力分组110,120)120,130)130,140

38、)140,150)人数人数6y361856()先确定先确定x,y,再完成下列频率分布直方图再完成下列频率分布直方图.就生产能力而言,就生产能力而言,A类工人中个体间的差异程类工人中个体间的差异程度与度与B类工人中个体间的差异程度哪个更小?类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论不用计算,可通过观察直方图直接回答结论)5758()分别估计分别估计A类工人和类工人和B类工人生产能类工人生产能力的平均数,并估计该工厂工人的生产能力力的平均数,并估计该工厂工人的生产能力的平均数的平均数(同一组中的数据用该组区间的中点同一组中的数据用该组区间的中点值作代表值作代表).5

39、9 ()甲、乙被抽到的概率均为,甲、乙被抽到的概率均为,且事件且事件“甲工人被抽到甲工人被抽到”与与“乙工人被抽到乙工人被抽到”相互独立,故甲、乙工人都被抽到的概率为相互独立,故甲、乙工人都被抽到的概率为()()由题意知由题意知A类工人中应抽查类工人中应抽查25名,名,B类工人中应抽查类工人中应抽查75名名.故故4+8+x+5+3=25,得得x=5,6+y+36+18=75,得得y=15.110110p 11.10100 60频率分布直方图如下:频率分布直方图如下:61从直方图可以判断:从直方图可以判断:B类工人中个体间的类工人中个体间的差异程度更小差异程度更小.62()A类工人生产能力的平均

40、数,类工人生产能力的平均数,B类工人生类工人生产能力的平均数以及全厂工人生产能力的平产能力的平均数以及全厂工人生产能力的平均数的估计值分别为均数的估计值分别为123,133.8和和131.1.485510511512525252525Ax 3135145123,25 6153618115125135145133.8,75757575Bx 2575123133.8131.1.100100 x 63试题以图表为背景,通过读表、试题以图表为背景,通过读表、识图,提取相关的信息,运用概率与统计识图,提取相关的信息,运用概率与统计的有关知识解决实际问题的有关知识解决实际问题.试题考查了数试题考查了数形结合思想,突出考查了数据处理能力与形结合思想,突出考查了数据处理能力与应用意识,需要引起重视应用意识,需要引起重视.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 常用办公文档
版权提示 | 免责声明

1,本文(概率与统计学习培训模板课件.ppt)为本站会员(林田)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|