1、数学有什么用数学有什么用数学与魔术数学问题?数学问题?因为在大多数人心里觉得数学很枯燥,也离他们的生活很遥远。为了考试,为了升学而不得不学习数学。数学果真这样无趣吗?否。古今中外有许多知名学者都认为数学充满了乐趣,充满了美。今天让我们来感受一下数学的美、数学的神奇。对数学进一步的了解。魔术的种类魔术的种类q微型魔术、q手彩魔术、q纸牌魔术、q社交魔术、q心理魔术等几大类。名人名言名人名言“数学是幻术所绝对必需的。”-哲学家 阿格里帕“纯数学是魔术家真正的魔杖”-数学家 诺瓦列斯 魔术师与数学家魔术师与数学家1、美国著名数学科普作家马丁加德纳就是一位出类拔萃的魔术大师,他曾写过一本名著数学与魔术
2、的诡异,里面收集了很多精彩的数学魔术。2、美国统计学家普西戴尔哥尼斯与人合著了一本数学教学与魔术技巧的书,其目的就是要试着向人们解说为什么数学家会着迷于魔术,要让人们相信在娱乐与数学之间有一座桥梁。数学魔术数学魔术q数学魔术是指利用数学原理而做成的魔术,因为效果很好,往往人们都会忽略其中的数学。q数学魔术始于1600年代,被当时所谓的算命者利用而计算人们的年龄,这是第一个数学魔术的由来,随着时代的变迁,数学魔术也在进化,从简单的加减乘除,到复杂的方程计算,都被应用到魔术当中,甚至面积也包吃住在内,这就是数学魔术。洞从哪里来?洞从哪里来?计算一下图中两个大小三角形会你斜边的斜率。面积怎么少了?面
3、积怎么少了?数学为你擦亮眼数学为你擦亮眼拼接成的长方形在对角线附近发生了微小的重叠,正是沿对角线的微小重叠导致了一个单位面积的丢失。扑克顺序巧安排扑克顺序巧安排q将1K共13张牌,表面上看顺序已乱,将其第1张放到第13张后面,取出第2张,再将手中的牌的第1张放到最后,取出第2张,如此反复进行,直到手中的牌全部取出为止,最后向观众展示的顺序正好是1,2,310,J,Q,K。q扑克牌的顺序为:q7,1,Q,2,8,3,J,4,9,5,K,6,10.猜第猜第1111个数个数12345678910在前两个方格中随便填两个 1 到 10 之间的数。从第三个方格开始,在每个方格里填入前两个方格里的数之和。
4、一直算出第 10 个方格里的数魔术揭秘魔术揭秘:q只需要除以 0.618q其实,仅凭借第 10 个数来推测第 11 个数的方法非常简单,你需要做的仅仅是把第 10 个数除以 0.618,得到的结果四舍五入一下就是第 11 个数了猜手机号猜手机号q把手机号分为前3位,中间4位,和最后4位q将中间4位乘以80再+1。将所得到的结果乘以250,再加上两次后4位。得到了一个最终结果结果:结果:q用这个结果减去250,再除以2,就得到观众的后面8位手机号猜年龄猜年龄q将你的年龄*67q告诉我后两位数结果:结果:q将后两位*3,得到的后两位即为年龄q魔术师:请MM将她的年龄把她的年龄复杂化,请她将年龄乘以
5、67后,将得数的最后两位数告诉魔术师,魔术师立即便知MM的芳龄。(魔术师可备计算器,让计算速度不快的MM也可以参加)解密:,得数的最后两位数就是。例如MM的魔术师只要把MM计算的结果后两位数乘以3年龄是23,将23乘以67,得1541,后两位数是41,再将41乘以3,得123,故MM的年龄是23.猜生日猜生日q第一步:将你的出生月份乘以4q第二步:将所得的结果加上9q第三步:将所得结果乘以25q第四步:将所得的结果加上你的生日的日期结果:结果:q把出生月份设成X,出生日期设成Yq算式:q(x4+9)25+yq=x425+925+y(分拆)q=100 x+225+yq先不看225,如像上面一样:
6、6月25日生日如果看做625(一个数字),那么可以写成6100+25,就像100 x(月份)+y(日期)一样q而除了100 x+y还多了一个225,结果多了225,那么魔术师就在心里减去225,像问题中的850,减去225等于625(6月25日),生日是这样算的。永恒的永恒的10891089q随便说一个各位都不相同三位数 然后用这个数减去它倒过来的数,将所得再倒过来加上前面的差,如果 三位数是123 123-321为负,那就倒过来减q举个例子 随意一个数 624q倒过来 426 624-426=198q198倒过来891 198+891=1089q如果 三位数是123 123-321为负,那就
7、倒过来减数学解密数学解密q假设3位数为abc,在代数学上表示为100a+10b+cq把这个数颠倒过来为cba,代数学上表示为100c+10b+aq用原数abc减去这个数cba,用代数表示就是 100a+10b+c-(100c+10b+a)=100(a-c)+(c-a)=99(c-a)得到的结果一定是下列99倍数中的一个:198、297、396、495、594、693、792或891,这8个数,任何一个数与它自身颠倒过来的数相加的和都等于1089永恒的永恒的10891089增强版增强版q叫观众随意想一个数,必须是三位数,如“174”,不能告诉魔术师。将数字倒过来,并与原数相减,大的减小的(471
8、-174=297),再将得到的数加上它倒过来的数字为1089,(297+792=1089),此为永恒的1089q去掉了此魔术原来必须想个“百位十位个位”的局限性,使此魔术更为自然,而此时,则会有如下情况:172,则271-172=99,99+99=198&121,121-121=0,0+0=0,因此,在观众计算完毕之后,魔术师可说:“现在请告诉我,你得到的是几位数呢?”1位数则为0,3位数则为198,四位则为1089。而当观众告诉魔术师是个三位数时,魔术师不仅能说出观众得到的是198,还能告诉观众,他想的数字个位与百位的差为一数学猜牌术数学猜牌术 q1.在桌上摆3堆牌,每堆牌的张数要相等,(假
9、如是15张吧)但是不要告诉表演者。q2.从第2堆拿出4张牌放到第1堆里。q3.从第3堆牌中拿出8张牌放在第1堆里。q4.数一下第2堆还有多少牌,(本例中还有11张牌),从第1堆牌中取出与第2堆相同数的牌放在第3堆。q5.从第2堆中拿出5张牌放在第1堆中。q表演者转过脸来,现在说:“把第2堆牌、第3堆牌拿开,那么第1堆中还有21张,对不对?”观众数一下,果然还有21张。秘诀秘诀q这是一个利用数学中的恒等变换原理来设计的魔术。必须记住:一是每堆牌的开始的张数必须相等。二是第3次从第1堆牌中移去现在和第2堆牌中相等的牌数。在本例中的数学式为 4*2+8+5=21 评论和建议评论和建议q这是一个完全靠
10、数学规律来表演的魔术,在这个魔术中的观众应该是比较“老实”的观众。如果他不完全按你告诉他的做,你最后的魔术将会失败。不过这种魔术最大的迷惑人的地方就是完全是由观众在控制牌。而且它的互动性很强。当然不是所有的观众都是这种“老实人”,对付他们就要用到一些“强给性牌”的魔术了。通灵数学通灵数学q在心里想出一个数,任何一个数,为了你自己计算方便,最好还是想出一个一位数或者两数,按如下步骤:q一、用2乘这个数,q二、再加上12q三、用2去除所得的总数q四、然后再减去原数结果:结果:q设想出的私密数为xq1、2x(乘以2)q2、2x+12(然后加上12)q3、(2x+12)/2=x+6(然后再除以2)q4、x+6-x=6(然后再减去原数)q第二步改成加18,结果就为9,结果为所加之数的一半。神奇的神奇的10011001q随机的3位数,重复写在一起组成一个6位数,q除以13,再除以7,再除以11,得到自己61746174号陷阱号陷阱q任取一个四位数A1A2A3A4,A1,A2,A3,A4不全相等,用A1,A2,A3,A4这四个数字排出一个最大四位数,再排出一个最小自然数,对两者之差再重复这种操作,结果如果?