1、1.1基础数列类型常数数列 如7,7,7,7,7,7,7,7,等差数列 如11,14,17,20,23,26,等比数列 如16,24,36,54,81,周期数列 如2,5,3,2,5,3,2,5,3,对称数列 如2,5,3,0,3,5,2,质数数列 如2,3,5,7,11,13,17合数数列 如4,6,8,9,10,12,14注意:1既不是质数也不是合数1.2 200以内质数表2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149
2、,151,157,163,167,173,179,181,191,193,197,1991.3 整除判定能被2整除的数,其末尾数字是2的倍数(即偶数)能被3整除的数,各位数字之和是3的倍数能被5整除的数,其末尾数字是5的倍数(即5、0)能被4整除的数,其末两位数字是4的倍数能被8整除的数,期末三位数字是8的倍数能被9整除的数,各位数字之和是9的倍数能被25整除的数,其末两位数字是25的倍数能被125整除的数,其末三位数字125的倍数1.4 经典分解91=713 111=337 119=717133=719 117=913 143=1113147=721 153=917 161=723171=9
3、19 187=1117 209=19111.5常用平方数 数字 平方1124394165256367498649811010011121121441316914196152251625617289183241936120400214412248423529245762562526676277292878429841309001.6常用立方数数字立方1128327464512562167343851297291010001.7 典型幂次数 底数指数234561234562491625363827641252164168125662512965322431024664729712882569512
4、1010241.8常用阶乘数数字阶乘1122364245120672075040840320936288010362880002.1 浓度问题1.混合后溶液的浓度,应介于混合前的两种溶液浓度之间。2.浓度=溶质溶液2.2 代入排除法1 奇数+奇数=偶数奇数-奇数=偶数偶数+偶数=偶数偶数-偶数=偶数奇数+偶数=奇数奇数-偶数=奇数2.任意两个数的和如果是奇数,那么差也是奇数;如果和是偶数,那么差也是偶数。任意两个数的和或差是奇数,则两数奇偶相反;和或差事偶数,则两数奇偶相同。3.余数特性一个数被2除得的余数,就是其末一位数字被2除得的余数一个数被5除得的余数,就是其末一位数字被5除得的余数一个
5、数被4除得的余数,就是其末两位数字被4除得的余数一个数被8除得的余数,就是其末三位数字被8除得的余数一个数被25除得的余数,就是其末两位数字被25除得的余数一个数被125除得的余数,就是其末三位数字被125除得的余数一个数被3除得的余数,就是其各位数字相加后被3除得的余数一个数被9除得的余数,就是其个位数字相加后被9除得的余数2.3 计算问题1.平方差2.完全平方和3.完全平方差4.立方和5.立方差6.完全立方和7.完全立方差8.等比数列求和 (q1)9.循环数198198198=19810010012134213421342134=21341000100010001检查:规律:有多少个循环数
6、,就有多少个1,1之间0的个数是循环数位数-1例如2134213421342134,中有“2134”四个,所以应该有4个1,同时2134为四位数,所以两个1之间应该有三个0,所以为10010001000110.乘方尾数口诀底数留个位,指数除以4留余数(余数为0,则看做4)例如19991998的末尾数字为:底数留个位,所以底数为9;指数除以4留余数,1998除以4的余数为2,所以最后为92=81,因此末尾数字为111.韦达定理其中x1和x2是这个方程的两个根,则:x1+x2=x1x2=逆推理:如果 a+b=m ab=n则a、b是的两个根。5.4 行程问题1.路程=速度时间2.相向运动:速度取和;
7、同向运动:速读取差3促进运动:速读取和;阻碍运动,速度取差5.5 工程问题工作总量=工作效率工作时间5.6 几何问题1.常用周长公式:正方形周长长方形周长圆形周长2.常用面积公式正方形面积长方形面积圆形面积三角形面积平行四边形面积梯形面积扇形面积3.常用表面积公式正方体表面积长方体表面积球表面积圆柱体表面积4.常用体积公式正方体体积长方体体积球的体积圆柱体体积圆锥体体积5.几何图形放缩性质若将一个图形扩大至原来的N倍,则:对应角度仍为原来的1倍;对应长度变为原来的N倍;面积变为原来的N2倍;体积变为原来的N3倍。6.几何最值理论1平面图形中,若周长一定,越接近于圆,面积越大。2平面图形中,若面
8、积一定,越接近于圆,周长越小。3立体图形中,若表面积一定,越接近于球体,体积越大。4立体图形中,若体积一定,越接近于球体,表面积越小。7.三角形三边关系三角形两边之和大于第三边,两边之差小于第三边。题目中例8非常重要。5.7 容斥原理1两集合标准型核心公式满足条件的个数+满足条件的个数-两者都满足的个数=总个数-两者都不满足的个数2三集合标准核心公式3三集合整体重复型核心公式假设满足三个条件的元素数量分别为A、B、C,而至少满足三个条件之一的总量为W。其中:满足一个条件的元素数量为x,满足两个条件的数量为y,满足三个条件的数量为z,从而有下面两个等式:W=x+y+zA+B+C=x1+y2+z3
9、5.8排列组合问题1.排列公式:2.组合公式:3.“捆绑插空法”核心提示相邻问题捆绑法:先将相邻元素全排列,然后视其为一个整体与剩余元素全排列;不邻问题插空法:现将剩余元素全排列,然后将不邻元素有序插入所成间隙中。4.对抗赛比赛场次基本公式淘汰赛仅需决出冠亚军 比赛场次=N-1 需决出1、2、3、4 比赛场次=N循环赛单循环(任意两个队打一场比赛) 比赛场次= 双循环赛(任意两个队打两场比赛) 比赛场次=5.9 概率问题1.单独概率=满足条件的情况数总的情况数2.某条件成立概率=1-该条件不成立的概率3.总体概率=满足条件的各种情况概率之和4.分布概率=满足条件的每个步骤概率之积5.条件概率:
10、“A成立”时“B成立的概率”=A、B同时成立的概率A成立的概率5.10 边端问题1.段数公式:段数=总长株距2.线性植树:单边植树:棵树=段数+1 双边植树:棵树=(段数+1)23.楼间植树:单边植树 棵树=段数-1 双边植树 棵树=(段数-1)24.环形植树:单边植树 棵树=段数 双边植树 棵树=段数25.方阵问题核心法则:人数公式:N层实心方阵的人数=N2外周公式:N层方阵最外层人数=(N-1)*4对于三角阵、五边阵的情况可以此类推6.过河问题核心法则:M个人过河,船上能载N个人,由于需要一个人划船,共需往返次(需要2)“过一次河”指的是单程,“往返一次”指的是双程载人过河的时候,最后一次
11、不再需要返回。5.12初等数学问题1.同余问题余同取余,和同加和,差同减差,公倍数作周期例如:一个数除以4余1,除以5余1,除以6余1,则取1,表示为60n+1 一个数除以4余3,除以5与2,除以6余1,则取7,表示为60n+7 一个数除以4余1,除以5余2,除以6余3,则取3,表示为60n+32.等差数列核心公式求和公式:项数公式:级差公式:通项公式:5.13 年龄问题1.基本知识点每过N年,每个人都长N岁两个人的年龄差在任何时候都是固定不变的两个人的年龄之间的倍数随着时间的推移而变小。2.平均分段法例如:甲对乙说:当我岁数是你现在岁数时,你才4岁。乙对甲说:当我的岁数是你现在岁数的时候,你
12、是67岁,则现在甲乙各多少岁?画出如下图:67-甲-乙-467-4=63,即相差了6367-甲-乙-4,共有三段,所以每段为633=21所以乙=4+21=25岁所以甲=25+21=46岁5.14 统筹问题1.“非闭合”货物集中问题判断每条“路”的两侧的货物总重量,在在这条路上一定是从轻的一侧流向重的一侧。特别提示:本法则必须适用于“非闭合”的路径问题中 本法则的应用,与各条路径的长短没有关系 我们应该从中间开始分析,这样可以更快。2.货物装卸为题如果有M辆车和(NM)个工厂,所需装卸工的总数就是需要装卸工人数最多的M各工厂所需的装卸工之和。(若M=N,则需要把各个点上的人加起来即答案)排列数公
13、式:Pn(n1)(n2)(nm1),(mn)组合数公式:CPP(规定1)。“装错信封”问题:D10,D21,D32,D49,D544,D6265,年龄问题:关键是年龄差不变; 几年后年龄大小年龄差倍数差小年龄 几年前年龄小年龄大小年龄差倍数差日期问题:闰年是366天,平年是365天,其中:1、3、5、7、8、10、12月都是31天,4、6、9、11是30天,闰年时候2月份29天,平年2月份是28天。植树问题 (1)线形植树:棵数总长间隔1 (2)环形植树:棵数总长间隔 (3)楼间植树:棵数总长间隔1 (4)剪绳问题:对折N次,从中剪M刀,则被剪成了(2NM1)段鸡兔同笼问题: 鸡数(兔脚数总头
14、数-总脚数)(兔脚数-鸡脚数) (一般将“每”量视为“脚数” ) 得失问题(鸡兔同笼问题的推广):不合格品数(1只合格品得分数产品总数-实得总分数)(每只合格品得分数+每只不合格品扣分数) 总产品数-(每只不合格品扣分数总产品数+实得总分数)(每只合格品得分数+每只不合格品扣分数)例:“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解:(41000-3525)(4+15) =47519=25(个)盈亏问题:(1)一次盈,一次亏:(盈+亏)(两次每人分配数的差)=人数(2)两次都有盈: (大盈-小盈)(两次每人分配数的差)=人数(3)两次都是亏: (大亏-小亏)(两次每人分配数的差)=人数(4)一次亏,一次刚好:亏(两次每人分配数的差)=人数(5)一次盈,一次刚好:盈(两次每人分配数的差)=人数例:“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?” 解(7+9)(10-8)=162=8(个)人数 108-9=80-9=71(个)桃子 钟表问题:钟面上按“分针”分为60小格,时针的转速是分针的,分针每小时可追及 时针与分针一昼夜重合22次,垂直44次,成180o22次。10 / 10