空间量测与计算解析课件.ppt

上传人(卖家):晟晟文业 文档编号:4294059 上传时间:2022-11-26 格式:PPT 页数:102 大小:3.39MB
下载 相关 举报
空间量测与计算解析课件.ppt_第1页
第1页 / 共102页
空间量测与计算解析课件.ppt_第2页
第2页 / 共102页
空间量测与计算解析课件.ppt_第3页
第3页 / 共102页
空间量测与计算解析课件.ppt_第4页
第4页 / 共102页
空间量测与计算解析课件.ppt_第5页
第5页 / 共102页
点击查看更多>>
资源描述

1、第三章第三章 空间量测与计算空间量测与计算单击此处编辑母版文本样式第二级第三级第四级第五级1第三章第三章 空间量测与计算空间量测与计算2022-11-261 空间量测与计算空间量测与计算:是指对GIS数据库中各种空间目标的基本参数进行量算与分析,如空间目标的位置、距离、周长、面积、体积、曲率、空间形态以及空间分布等。空间量测与计算空间量测与计算是GIS中获取地理空间信息的基本手段基本手段,所获得的基本空间参数是进行复杂空间分析、模拟与决策制定的基础。2022-11-262第3章 空间量测与计算3.1 空间量测尺度空间量测尺度3.2 基本几何参数量测3.3 地理空间目标形态量测3.4 空间分布计

2、算与分析2022-11-2633.1 空间量测尺度空间量测尺度3.1.1 空间维与空间量测关系空间维与空间量测关系 3.1.2 几何数据的量测尺度几何数据的量测尺度 3.1.3 属性数据的量测尺度属性数据的量测尺度 2022-11-2643.1 空间量测尺度 在地理空间中,不同形态的空间目标存在着不同维度的分布,而不同维的空间目标隐含的信息又存在差异,因此在进行空间量测时首空间量测时首先需要确定空间目标的维度先需要确定空间目标的维度。空间目标维度的划分一方面取决于空间量空间目标维度的划分一方面取决于空间量测尺度测尺度,另一方面又反作用于量测尺度,影响着测量所达到的精度。2022-11-2653

3、.1.1 空间维与空间量测关系空间目标分为:空间目标分为:(1)实体)实体 实体描述空间中的静态物体,一般是以0维、1维、2维、3维、分数维存在;(2)现象)现象 现象描述空间物体发生发展过程,一般是以3维和4维,即2维+时间维和3维+时间维的形式存在。空间维的划分还存在高维空间,但在GIS空间量测中只考虑与空间量测关系密切的0维、1维、2维、3维、4维以及分数维。2022-11-2661.0维空间目标与空间量测维空间目标与空间量测 0维就是空间中的一个点维就是空间中的一个点(Point),即点是0维的表示。在2维欧氏空间中,点用惟一的实数对(x,y)来表示 在3维欧氏空间中,用惟一的数组(x

4、,y,z)来表示。在在0维空间中用点代表空间目标时,只维空间中用点代表空间目标时,只考虑目标的位置、与其他目标的关系,而考虑目标的位置、与其他目标的关系,而不考虑它的大小、面积、形状等属性。不考虑它的大小、面积、形状等属性。2022-11-267 实体点实体点(NE):用标识点表示点特征位置的点(或面特征衰减为一点);标号点标号点(NL):用于显示地图和插图文本信息(如特征名称点),它有助于特征识别;面点标识面点标识(NA):在某面状图形内标明该面属性信息的点;节点节点(NO、NN):是两条或多条连线或链的拓扑连结点,或者是一条连线或链端点。在在GIS空间量测中:空间量测中:0维空间目标包括实

5、体点、标号点、面点标维空间目标包括实体点、标号点、面点标识及节点等识及节点等GIS中点的类型及解释中点的类型及解释:2022-11-2682.1维空间目标与空间量测维空间目标与空间量测 1维表示空间中一个线要素,或维表示空间中一个线要素,或者空间对象之间的边界者空间对象之间的边界。GIS空间分析中的1维空间目标包括线段、弦列、弧、拓扑连线、链、全链、面链、网链以及环等。2022-11-269(1)线段)线段:两点间的直线。(2)弦列)弦列:点的序列,表示一串互相联结无分支的线段,弦列可与其自身或其他弦列相交。(3)弧)弧:形成一曲线的点的轨迹,该曲线可由数学函数定义。(4)拓扑连线)拓扑连线:

6、两个节点的拓扑连接,可利用其节点顺序确定方向。2022-11-2610(5)链)链:非相交线段或弧的无分支而有方向的序列,它的两个端点以节点为界,这些节点不一定相异。全链:全链:是一条可以显示定位左右多边形和始终端节点的链,是一个2维拓扑面的组成部分);面链:面链:是一条可以显示定位左右多边形但不能定位始终端节点的链,也是一个2维拓扑面的组成部分 网链:网链:是一条可以显示定位始终端节点但不能定位左右多边形的链,是网络的组成部分全链全链左多边形末结点始结点右多边形面链面链左多边形右多边形网链网链末结点始结点2022-11-2611(6)环)环:由不相交的链、弦列或弧组成的闭合序列,一个环表示一

7、个封闭的边界,但不表示封闭内的面积,环也可以看成是链的特殊形式。G-环:环:是由一系列具有经度、纬度坐标的点组成的串,它定义了一个封闭的、无交叉的边界,其首尾点必须重合。GT-环:环:是由全链和(或)面链组成的环。G-环GT-环2022-11-2612 在在GIS空间量测中:空间量测中:1维线状要素在表示空间目标时同样没没有考虑面积、体积等属性有考虑面积、体积等属性,而是突出地物突出地物的长度、弯曲度和走向等特征的长度、弯曲度和走向等特征。另外,1维线状要素也是组成面或体的构架,没有粗细,渲染时不可见。2022-11-26133.2维空间目标与空间量测维空间目标与空间量测 2维表示空间中的一个

8、面状要素,在二维欧氏平面上指由一组闭合弧段所包围的空间区域。由于面状要素由闭合弧段所界定,故2维矢维矢量又称为多边形量又称为多边形。空间分析中的2维空间目标包括内面、G-多边形、GT-多边形、广义多边形、虚多边形、像元及网络单元等。内面 G-多边形GT-多边形广义多边形像元网络单元2022-11-2614在在GIS空间量测中:空间量测中:2维空间目标量测:面积、面积、周长、中心、质心周长、中心、质心等2022-11-26154.3维空间目标与空间量测维空间目标与空间量测 3维空间存在的空间目标是由一组或维空间存在的空间目标是由一组或多组闭合曲面所包围的空间对象。多组闭合曲面所包围的空间对象。3

9、维空间目标可以由2维空间目标组合,也可由3维体元构成。3维空间对象:包括体元、标识体元、体元、标识体元、3维组合空间目标、体空间维组合空间目标、体空间等。2022-11-2616在在GIS空间量测中:空间量测中:3维空间目标的量测可以获得体积、表面积、可以获得体积、表面积、表周长等信息表周长等信息。目前还没有成型的真3维GIS空间分析处理软件,对于垂直方向的第3维信息通常抽象成一个属性值(如高程、气压、温度等),然后进行空间分析和处理。通常意义上,通常意义上,3维指立体空间,此外还可以维指立体空间,此外还可以表示表示2维维+时间维时间维,例如在GIS中分析土地、沙漠、洪水、火灾等2维空间目标随

10、时间变化的发展过程,获得空间目标变化的宏观信息,决策者可以根据这些变化的特点和规律进行宏观管理与决策。2022-11-26175.4维空间目标与空间量测维空间目标与空间量测 4维空间是在维空间是在3维空间的基础上加上时维空间的基础上加上时间维间维,4维空间量测通过测量值来体现3维立体目标物在时间上的变化。与2维+时间维相比,4维空间所描述的对象由平面变为立体。平面目标随时间的变化限于平面内的各个方向,而立体空间目标的变化存在360个方向角,变化形式多种多样,因此4维空间目标包含更多的空间信息。2022-11-2618 如:如:GIS中表示山体的变化可以包括山谷的宽窄变化、山脊的走向变化、山体的

11、高度变化、山体基地面积的变化等。传统GIS以平面目标的描述为主,随着GIS理论与技术的不断发展,3维目标物的空间表达日益广泛,因此4维空间对象的量测越发重要。2022-11-26196.分数维空间目标与空间量测分数维空间目标与空间量测 随着理论与实践的不断进步,整数维已不能充分反映几何物体的形态特征和空间延展特征。如一条曲线和一条直线从某种角度都可以如一条曲线和一条直线从某种角度都可以看成看成1维的,但曲线的形态要比直线复杂得多,维的,但曲线的形态要比直线复杂得多,其携带的信息也多得多,当量测曲线的尺子越小其携带的信息也多得多,当量测曲线的尺子越小时,量测曲线的长度值就越大。时,量测曲线的长度

12、值就越大。空间量测的最终目的是真实反映空间目标空间量测的最终目的是真实反映空间目标及其相互关系,为了减小量测误差,降低空间信及其相互关系,为了减小量测误差,降低空间信息损失量,提高量测精确度,在息损失量,提高量测精确度,在GIS空间量测中空间量测中引用了分数维。引用了分数维。2022-11-2620 在Koch曲线中,其整体是一条无限长的折叠线,用无穷小的线段量,其长度结果是无穷大;用平面量,其结果是0(此曲线中不包含平面);只有找一个与Koch曲线维数相同的尺子量才会得到有限值,这个维数显然大于1且小于2,是一个分数维,Koch曲线的维数是1.2618。Koch曲线的演变过程2022-11-

13、2621 GIS主要研究地球表层若干要素的空间分布,属于22.5维,通常将数字位置模型(2维)和数值高程模型(1维)的结合称为2+1维或3维,加上时间坐标的GIS称为4维维GIS或时态或时态GIS。不同的空间维之间还可以相互转化,例如,地理信息具有多维的结构特征,即在二维空间的基础上,实现多专题的第三维信息结构。不同空间维之间的转化主要取决于用户根据不同的需要所确定的空间尺度,有时也受制于技术条件和客观条件。2022-11-26223.1.2 几何数据的量测尺度 在地理信息系统中,比例尺对空间量测结果有很大影响。一定比例尺的空间数据决定了空间数据的密度、空间坐标的精确有效位和相应影像数据的空间

14、分辨率,也表达了空间目标的抽象程度,不同的比例尺可以改变空间目标的维数不同的比例尺可以改变空间目标的维数表达表达。2022-11-26231.空间量测尺度与空间维空间量测尺度与空间维 对某一空间目标描述所选用的空间空间维取决于空间尺度维取决于空间尺度,而空间尺度的最终空间尺度的最终确定又取决于用户的需求和目的确定又取决于用户的需求和目的。用户在进行空间分析之前根据自己的需求和使用目的来确定空间量测的尺度,空间尺度一旦确定,就决定了在该尺度下的空间目标物被表达的空间维。2022-11-26242.空间量测尺度与空间量测精度空间量测尺度与空间量测精度 一般来说,比例尺越大比例尺越大,其所承载的空间

15、信息越多,在进行空间量测时所能够量测的信息也就越多,所得到的量所得到的量测值越精确测值越精确,这一点等同于用传统方法在不同比例尺的纸制地图上用曲线计量测。2022-11-26253.1.3 属性数据的量测尺度 属性数据对空间对象属性的说明。在GIS中,属性数据是指与空间位置无直接关系的特征数据,它是与地理实体相联系、经过抽象的地理变量 通常可将其分为:(1)定性属性数据)定性属性数据 命名量命名量 次序量次序量 (2)定量属性数据)定量属性数据 间隔量间隔量 比率量比率量2022-11-2626第3章 空间量测与计算3.1 空间量测尺度3.2 基本几何参数量测基本几何参数量测3.3 地理空间目

16、标形态量测3.4 空间分布计算与分析2022-11-26273.2 基本几何参数量测 基本几何参数量测包括对点、线、点、线、面面空间目标的位置、中心、重心、长度、位置、中心、重心、长度、面积、体积和曲率等面积、体积和曲率等的量测与计算。这些几何参数是了解空间对象、进行高级空间分析以及制定决策的基本信息。2022-11-26283.2 空间量测尺度空间量测尺度3.2.1 位置量测位置量测3.2.2 中心量测中心量测 3.2.3 重心量测重心量测 3.2.4 长度量测长度量测3.2.5 面积量测面积量测3.2.6 体积量测体积量测2022-11-26293.2.1 位置量测 空间位置是所有空间目标

17、物共有的描述参数。空间位置借助于空间坐标系来传递空间物体空间位置借助于空间坐标系来传递空间物体的个体定位信息,包括绝对位置和相对位置。的个体定位信息,包括绝对位置和相对位置。在空间分析中所需要的位置信息是关于点、线、面、体目标物的绝对位置绝对位置和相对位置相对位置信息。2022-11-2630 矢量GIS中点、线、面三类地理目标的空间位置用其特征点的坐标表达和存储。点目标的位置:点目标的位置:在欧氏平面内用单独的一对(x,y)坐标表达,在3维空间中用(x,y,z)坐标表达;线目标的位置:线目标的位置:用坐标串表达,在2维欧氏空间中用一组离散化实数点对表示:(x1,y1),(x2,y2),(xn

18、,yn),在3维空间中表示为:(x1,y1,z1),(x2,y2,z2),(xn,yn,zn),其中n是大于1的整数;面状目标的位置:面状目标的位置:由组成它的线状目标的位置表达;体状目标的位置体状目标的位置:由组成它的线状目标和面状目标的位置表达。2022-11-2631 在矢量数据结构中,由于其位置直接由坐标点来表示,所以位置是明显的,但属性是隐含的;在栅格数据结构中,每一个位置点都表现为一个单元,属性是明显的,而位置是隐含的。2022-11-2632 相对位置的确定有很多方法:相对位置的确定有很多方法:距离;拓扑关系 由于位置精度的提高是其他量测精度提高的基础,因此,位置精度的提高是今后

19、位置精度的提高是今后GIS空空间量测需要解决的一个重要的数据质量问题间量测需要解决的一个重要的数据质量问题。2022-11-26333.2.2 中心量测 空间量测的中心多指几何中心,即1维、2维空间目标的几何中心,或由多个点组成的空间目标在空间上的分布中心。中心中心/质心对空间对象的表达和其他质心对空间对象的表达和其他参数的获取具有重要意义。参数的获取具有重要意义。平面物体几何中心线状物体几何中心1维和维和2维目标物的几何中心维目标物的几何中心2022-11-2634nxCniix1nyCniiy1不规则面状形体几何中心公式 式中,Cx、Cy分别为不规则面状物体的几何中学的横、纵坐标2022-

20、11-2635单一多边形的重心位置单一多边形的重心位置3.2.3 重心量测 重心:重心:是描述地理对象空间分布的一个重要指标。从重心移动的轨迹可以得到空间目标的变化情况和变化速度。2022-11-26362022-11-2637按梯形计算重心位置按梯形计算重心位置x 设多边形的顶点序列(xi,yi)按顺时针编码,则其重心的计算公式为iiiGiiiGAAyYAAxX/_3/)(3/)(2/)(12121212111iiiiiiiiiiiiiiiiiiixxyyyyAyxxxxAxxxyyA 面状物体的重心可以通过计算梯形重心的平均值得到,将多边形的各个顶点投影到x轴上,得到一系列梯形 2022-

21、11-2638一个由 N 个顶点(xi,yi)确定的不自交闭多边形的中心能如下计算记号,(xN,yN)与顶点(x0,y0)相同。多边形的面积为:多边形的重心 2022-11-26393.2.4 长度量测 长度是空间量测的基本参数,它的数值可以代表点、线、面、体间的距离,也可以代表线状对象的长度、面和体的周长等。2022-11-26401.距离量测距离量测(1)简单距离)简单距离 两点间距离 点到线目标的距离 点到面状目标的距离 线状物体间距离 面状目标物间的距离 简单距离的量测都是绝对物理距离量测,中间不考虑任何障碍物的影响。2022-11-2641大圆距离 在球面上,经过球心的平面与地球表面

22、相交形成的圆弧称为大圆 球面上任意两点间的最短距离是经过这两点的大圆在这两点间的弧线长度。2022-11-2642P1P2PP022/bacbyaxDpp 设有一直线段L,两端点的坐标为(xA,yA)和(xB,yB),另一点P的坐标为(xP,yP)。点P到直线L的线距离为 点到线目标的距离点到线目标的距离BABAPBpAPAPByxxyyxyxxyxyD22)()(BABAxxyyD=2022-11-2643点到面状目标的距离点到面状目标的距离点到面状目标的距离PPP 中心距离 最短距离 最大距离2022-11-2644线状物体间距离线状物体间距离 两个线状物体L1、L2间的距离可以定义为L1

23、上的点P1与L2上的点P2间距离的极小值,即),min(221121LPLPdddPP两直线间的距离表达BCAdbL1L2aD),min(12DdBbBDBCAaADACd2022-11-2645面状目标面状目标间间的距离的距离面状目标物间的距离最短距离最大距离重心距离2022-11-2646(2)函数距离)函数距离曼哈顿距离曼哈顿距离医院病人|),(jijiyyxxjid2022-11-2647现代城几乎现代城几乎都是都是采用棋盘采用棋盘方格方格设设计街区计街区,如果要前往某,如果要前往某个地区个地区,我们无法我们无法取走短直取走短直线线,而必須,而必須遵遵守棋盘格守棋盘格的的规划来规划来走

24、,也就是只走,也就是只有四有四个个方向方向可选可选。而。而计计算出行走算出行走距离距离的算法的算法称为称为曼哈曼哈顿距离。即顿距离。即南北距离加上东西距离。南北距离加上东西距离。关于障碍物相对障碍物 障碍物对空间目标产生的阻抗值小于某临界值。相对障碍物限制但不阻止物体的运动,可以减慢物体的运动,或消耗额外的能量。如汽车行走里程大于地图上两点距离。常用于研究最短路径、最低成本距离等。绝对障碍物。障碍物对空间目标的阻抗值大于或等于某临界值,则空间目标的运动完全被阻止,该障碍物为绝对障碍物。2022-11-2648100 110 120 130AB高程变化与里程高程变化与里程 多边形的周长可以通过围

25、绕多边形相互连接的线段,即封闭绘图模型来进行计算。2.周长周长niidL1di为每一段线段的长度 2022-11-2649 栅格数据栅格数据:计算线长是逐个将格网单元数值累加得到全长。矢量数据:矢量数据:对于每条直线段,软件都将存储一组坐标对,每一坐标对之间的距离都能通过勾股定理计算出来,然后直接把线段长度加起来3.矢量矢量GIS和栅格和栅格GIS长度量测的差异长度量测的差异栅格数据计算结果栅格数据计算结果与栅格大小有关与栅格大小有关矢量数据通过坐标矢量数据通过坐标计算,精度高计算,精度高2022-11-26503.2.5 面积量测 面积:面积:在二维欧氏平面上是指由一组闭合弧段所包围的空间区

26、域。分类:分类:简单图形,复合图形 通常情况下,将多边形边界分解为上下两半,其面积是上半边界下的积分值与下半边界下的积分值之差。设面状物体的轮廓边界由一个点的序列表示,其面设面状物体的轮廓边界由一个点的序列表示,其面积为积为 对于三维曲面的面积,包含两种概念:将三维曲面投影到二维平面上,计算其在平面上的投影面积;三维曲面的表面积。niiiiiyxyxS11121x(x1,y1)(xn,yn)011)()(211101iniyyxxsiiniii时,当2022-11-26513.2.6 体积量测 体积:指空间曲面与一基准平面之间的容积,它的计算方法由于空间曲面的不同而不同。工程应用中有:挖方、填

27、方地形体积量算h0h复杂地形计算步骤:复杂地形计算步骤:(1)生成等值线图;(2)量算各条等值线围成的面积,设为 ;(3)设等值线间的距离为h,则体积为 nffff,210hfnffhfvn)1(2221311000 式中:f 0、h 0分别为最上层(或最下层)等高线围成的面积和相应的高程差。2022-11-2652基于三角形格网的体积算法h3h2h1A基于正方形格网的体积算法h3h4h2h1A3/)(321hhhSvA4/)(4321hhhhSvA2022-11-2653第3章 空间量测与计算3.1 空间量测尺度3.2 基本几何参数量测3.3 地理空间目标形态量测地理空间目标形态量测3.4

28、空间分布计算与分析2022-11-26543.3 地理空间目标形态量测 对于空间目标物的分析除了量测其基本几何参数外,还需量测其空间形态空间形态。通过空间量测获取空间目标具体、量化的形态信息,以便反映客观事物的特征,更好地为空间决策服务。对于地理空间目标被抽象为点、线、面、体的四大类中对于地理空间目标被抽象为点、线、面、体的四大类中 (1)点点状空间目标是零维空间体,没有没有任何空间形态;(2)线、面、体空间目标线、面、体空间目标作为超零维的空间体,各自各自具有不同的几何形态具有不同的几何形态,并且随着空间维数的增加其空间形态愈加复杂。2022-11-26553.3 地理空间目标形态量测地理空

29、间目标形态量测 3.3.1 线状地物线状地物 3.3.2 面状地物面状地物 2022-11-26563.3.1 线状地物 在地理空间要素的表现形式中,根据线状形态表现,分为:绝对线状绝对线状。表现为面状目标物的轮廓线 非绝对线状非绝对线状。线条形面状地物在小比例尺图幅上的表现 2022-11-2657 线状物体在形态上表现为直线和曲线两种,其中曲线的形态量测更为重要。曲线的描述经常涉及到两个参数:曲线的描述经常涉及到两个参数:曲率曲率反映的是曲线的局部弯曲特征,线状地物的曲率由数学分析定义为曲线切线方向角相对于弧长的转动率,设曲线的形式为y=f(x),则曲线上任意一点的曲率为 2/32)y(1

30、yK 2022-11-2658工程管理意义重大工程管理意义重大河流弯曲程度影响河道通畅情况河流弯曲程度影响河道通畅情况高速公路的曲率影响汽车行驶速度和行程距离高速公路的曲率影响汽车行驶速度和行程距离 实际应用中,主要反映曲线的迂回特征。在交通运输中,迂回特征加大了运输成本,降低了运输效率。其他应用:研究公交快捷性2022-11-2659弯曲度弯曲度S是描述曲线弯曲程度的是描述曲线弯曲程度的另一个参数,是曲线长度另一个参数,是曲线长度L与曲与曲线两端点线段长度线两端点线段长度l之比。用公式之比。用公式表示为表示为l/LS 设x xDx为(a b)内两个邻近的点 它们在曲线yf(x)上的对应点为M

31、 N 并设对应于x的增量Dx 弧 s 的增量为Ds.因为当Dx0时 Ds MN 又Dx与Ds同号 所以 由此得弧微分公式:202200)(1lim|)()(limlimxyxyxxsdxdsxxxDDDDDDDDDD21 y.dxyds21.202200)(1lim|)()(limlimxyxyxxsdxdsxxxDDDDDDDDDD202200)(1lim|)()(limlimxyxyxxsdxdsxxxDDDDDDDDDD2022-11-2660 设曲线C的方程为yf(x)且f(x)具有二阶导数.因为tan ay 所以 sec 2adaydx 在0limDssDDadsda存在的条件下 d

32、sdKa.又知 ds21 ydx 从而得曲率的计算公式 232)1(|yydsdK a.dxyydxydxyd2221tan1sec aaadxyydxydxyd2221tan1sec aaadxyydxydxyd2221tan1sec aaa.2022-11-26613.3.2 面状地物 面状物体常见的规则形态:面状物体常见的规则形态:圆形、四边形、梯形、三角形、长方形等,但大多数空间面状物体表现为非规则的复杂形态 对于它们的描述需要从多个角度运用多种手段进行形态量测。2022-11-26621.简单的图形概括简单的图形概括 复杂的面状物体有时需要用形状简简单的图形单的图形对其概括描述 简单

33、的图形包括:最大内切圆、最小外接圆和最小凸包等。2022-11-2663形状系数形状系数r可以描述形状的复杂程度可以描述形状的复杂程度APr2 其中其中P为地物周长,为地物周长,A为面积。如果为面积。如果r1为膨胀型。为膨胀型。圆U=1APr2U1膨胀型U1紧缩型形状特征描述参数2022-11-26642.空间完整性空间完整性 面状空间形态的复杂性有时候表现在面状物体的复合上。对于复合的多边形形态进行量测时需要考虑两个方面:(1)以空洞区域和碎片区域确定该)以空洞区域和碎片区域确定该区域的空间完整性;区域的空间完整性;(2)多边形边界特征描述问题。)多边形边界特征描述问题。2022-11-26

34、65 空间完整性空间完整性是空洞区域内空洞数量的度量,通常使用欧拉函数量测。欧拉数(空洞数)(碎片数1)空洞数空洞数是外部多边形自身包含的多边形空洞数量,碎片数碎片数是碎片区域内多边形的数量。(a)欧拉数=4(b)欧拉数=3(c)欧拉数=3欧拉数=4(11)或欧拉数=40 欧拉数=4(21)=3或欧拉数=41=3 欧拉数=5(31)=3 2022-11-2666注意:有注意:有孔孔分布的才称为碎片分布的才称为碎片第3章 空间量测与计算3.1 空间量测尺度3.2 基本几何参数量测3.3 地理空间目标形态量测3.4 空间分布计算与分析空间分布计算与分析2022-11-26673.4 空间分布计算与

35、分析 空间对象的空间分布特征:空间对象的空间分布特征:在空间上的组合、在空间上的组合、排列、彼此间的相互关系等特征排列、彼此间的相互关系等特征。空间分布的研究内容主要有两个方面空间分布的研究内容主要有两个方面:分布对象分布对象(指所研究的空间物体和对象)分布区域分布区域(指分布对象所占据的空间域和定义域)2022-11-26683.4 空间分布计算与分析空间分布计算与分析 3.4.1 空间分布类型空间分布类型 3.4.2 点模式的空间分布点模式的空间分布 3.4.3 线模式的空间分布线模式的空间分布 3.4.4 区域模式的空间分布区域模式的空间分布2022-11-26693.4.1 空间分布类

36、型 1234567分布分布类型类型沿线状要素的离散点沿线状要素连续分布面域上的离散点线状分布离散的面状分布连续的面状分布空间连续分布举例举例城市分布、火山分布河流流速流量、高速公路车流量城市分布高速公路或河流沿线草场分布、农田分布人口普查区域、行政区划地形、降水传统理论研究中空间分布的基本类型传统理论研究中空间分布的基本类型 2022-11-2670人口普查区域,行政区划湖泊的分布,居民区中楼房的分布 污染的扩散大气运动河网,交通网,地图上的边界线降水城镇的分布,火山的分布面面河流上的防护堤坝,城市街道的林荫道、公汽路线街道两旁的林荫树江河里的船只,公路上的汽车,路旁分布的加油站线线连续连续离

37、散离散连续连续离散离散连续连续离散离散面面线线点点分布分布区域区域分布方式分布方式分布对象分布对象郭仁忠在郭仁忠在空间分析空间分析一书中一书中“空间分布的类型划分空间分布的类型划分”2022-11-26713.4.2 点模式的空间分布 点模式的空间分布:点模式的空间分布:是一种比较常见的状态。如不同区域内的人口、房屋、城市分布,油田区的油井分布等。点模式的描述参数有点模式的描述参数有:(:(1)分布密度;(2)分布中心;(3)分布轴线;(4)离散度;(5)样方分析;(6)最近邻分析2022-11-26721.分布密度分布密度 分布密度分布密度描述的是点、线、面目标的空间分布,是最简单、最常用的

38、点模式空间分布描述方法。是单位分布区域内分布对象的数量,是两个比率尺度数据的比值分布区域的计量分布区域的计量分布对象的计量分布对象的计量分布密度分布密度=分布对象的计量分布对象的计量:(1)发生频数;(2)分布对象几何度量,线和面计算长度和面积;(3)分布对象的某种属性计算,如计算沿河流分布的城市人口数。分布区域的计量:分布区域的计量:为线状和面状,分别计算其长度和面积。2022-11-26732.样方分析样方分析 均一点模式是根据均一的子区域之间的关系定义的,这种子区域称为较大区域的样方。如果每个均一的样方包含相同数量的点对象,则整个研究区分布具有均一性,这种检验分布性的标准型方法称为样方分

39、析样方分析。用简单的x2数学检验法对这些数据进行估计EEQx/)(22Q每个样方中实际观测到的点数;E每个样方中期望的分布值。2022-11-2674方差均值比率(方差均值比率(VMR)是一种根据样方进行分析的特定方法,是反映子区变化频率与每一样方内平均点数之间关系的指数,其值等于子区域中点数频率的方差除以子区域中的平均点数。该方法建立在该方法建立在Poisson分布(随机分布)的基础上,即分布(随机分布)的基础上,即随机分布有方差与均值相等的性质(随机分布有方差与均值相等的性质(V=m)如果如果V/m1呈聚集分布呈聚集分布如果如果V/m 1呈均一分布呈均一分布2022-11-26753.最近

40、邻分析最近邻分析 最近邻分析最近邻分析是一种分析点位置关系的点模式分析法。中心思想中心思想:先测出每点与其最近点间的距离,然后将量测值与所测距离的均值进行比较。ranobsDDR 最邻近点指数最邻近点指数 Dobs为各类点与最近邻点之间距离的平均值,Dran为随机分布各点之间的平均距离。N为总点数,A为设定区域的面积。当当R0.5为聚集分布,为聚集分布,0.5 R 1.5为随机分为随机分布,布,R1.5为均匀分布为均匀分布ANDran212022-11-26764.分布中心分布中心 可以概略表示点状分布对象的总体分布特征、点状分布对象的总体分布特征、中心位置、聚集程度等信息中心位置、聚集程度等

41、信息。如在区域经济特征分析中,分布中心对城镇、工业、商业的位置分析结果有深刻的影响,它在某种意义上代表了点状对象的空间位置。空间分布中心的研究对象空间分布中心的研究对象可以是几何中心、加权平均中心、中位中心以及极值中心等。2022-11-26775.分布轴线和离散度分布轴线和离散度 离散点群在空间的分布趋势或走向可以用分布轴线分布轴线来确定。分布轴线是一条拟合直线,描述了离散点群的总体走向,而点群相对于轴线的距离则反映了离散点群在点群走向上的离散程度。离散度离散度是反应分布对象聚集程度的空间分布参数,它是分布中心和分布轴线的补充。2022-11-2678 分布轴线分布轴线xydpdvL0dh

42、分布轴线的确定与点群相对于轴线的离散程度有关,点群相对于轴线的离散程度可以用三种不同的距三种不同的距离来度量离来度量:垂直距离dv、水平距离dh、直交距离dp。2022-11-2679 在具有相同或相近的分布中心和分布密度的情况下,可以用不同的离散度来反映空间分离散度来反映空间分布特性布特性,离散度可以用平均距离、标准距离、极值距离、平均邻近距离来度量。一般来说,点群具有一定的集中趋势,但并不一定集中分布于某一点(分布中心)处,可能是规则分布,或是随机分布,或是有几个分布中心,这样离散度的计算就失去意义。离散度离散度2022-11-26803.4.3 线模式的空间分布 线划要素同点要素一样在地

43、面上占有一定的空间,并表现出一定的结构和模式。由于线划要素本身属于一维空间体,与点要素相比增加了长度和方向,因此其空间空间分布也较点状空间分布复杂分布也较点状空间分布复杂。2022-11-26811.线密度线密度 对线要素也要进行密度分析,用某区域内线的长度之和除以该区域面积总和即可得到某一区域的线密度,单位是m/m2,或km/km2。GIS空间分析中经常用线密度求值:道路网密度道路网密度:即为全市道路总长除以该市的面积;对某一地区的水域状况进行分析时,需求出河网密度值等。在很多情况下,线密度值还用来与不同地区或相同地区不同时期的其他数值进行对比,得出所需的信息。2022-11-26822.最

44、近邻分析最近邻分析 点的最近邻分析同样适用于线模式的空间最近邻分析同样适用于线模式的空间分布分析分布分析。即以以线中点的位置来代替线,忽略线的长度,对各中心点进行最近邻统计。但线要素具有长度,若忽略长度进行分析就失去了线划要素的特有意义,不能反映线体本身的真实分布。2022-11-2683 一般对线要素可以采用线体随机取样分析,然后统计最近邻距离。具体方法:具体方法:在地图每条线上选一个随机点;用直线连接最近邻的两点;量测这些连线段的距离,计算出平均最近邻距离值;进行检验以判断是否服从随机分布。线要素的最近邻距离2022-11-26843.线状对象的定向线状对象的定向 1维的线划要素具有方向性

45、,分布在2维和3维空间上的线状对象同样具有方向性。线状对象的方向一般用“玫瑰图玫瑰图”分析分析,其基本步骤为:确定线划要素的分布中心;以此中心为圆心画直线代表观测的线划要素;进行矢量合成;将合成矢量的坐标值除以线对象的总数。单行线 单行线 广场 线状要素的方向2022-11-26854.连通度连通度 线状物体在空间中形成网络,因此研究线状物体之间的连通性极为重要。线状物体连通度是指线划要素在构成网络时的连接性以及从一处到另一处的连通程度,它是对网络复杂性的一种量度。通常,使用指数 和指数 来衡量线状物体的连通度。a2022-11-2686 指数等于给定空间网络体节点连线数(L)与可能存在的所有

46、连线数之比,即给定连线数与最大连线数的比值。取值范围为01,当没有节点连接时为0,当可能存在的所有节点连线实际都存在时为1。(V为节点数)指数用于衡量环路性能,表示节点被交替路径连接的程度。取值范围也为01,当网络中不存在环路时取0,当实际环路数与最大环路数相等时为1,该指数是衡量连通性的一种替代。a)(VLLL23max521VVL最大可能出现的环路数实际环路数a2022-11-26873.4.4 区域模式的空间分布 区域模式和点模式具有相似性,因此可利用点模式的一些研究方法来研究区域模式。如计算研究区域中多边形密度的方法,一种是与点模式完全相同的多边形数量密度;一种是和点模式稍微有差别的面

47、积密度,它的方式是先求出多边形的面积,然后计算各类多边形的面积与研究区域总面积的比值,得出的结果是百分比而不是点模式的密度比。区域模式区域模式是一个二维空间分布,它具有零维和一维空间分布所不具有的信息,其分布模式主要包括离散区域分布和连续区域分布两种模式。2022-11-26881.离散区域分布模式离散区域分布模式 离散区域分布在地质地矿研究中比较常见,如金属矿、油气带分布图等。离散区域分布,按照离散状态的不同分为簇状、分散状和随机状。扩展邻接法扩展邻接法和洛伦兹曲线是研究离散区域分布的重要方法和洛伦兹曲线是研究离散区域分布的重要方法。扩展邻接法扩展邻接法是连接边数的统计方法。根据定义,一个连

48、接边是指两个多边形共享的边或边界,通过计算多边形模式中连接边的数量并刻画每一个图层的连接结构,进而确定图形的分布状态。对于同质区,按二进制划分的多边形确定多边形的连接边数量;对于异质区,则分别按照同质、异质间的连接边数进行统计,如果同质区多边形间的连接边数大于异质区多边形间的连接边数,则此分布为簇状分布。2022-11-2689利用邻接矩阵表示利用邻接矩阵表示2022-11-2690类型类型频数累积频数累积0A4.7B13.7C27.9D50E1000E累积频数累积频数A类型类型BABCD20408060100 离开离开45度线越远表示分布度线越远表示分布越不均匀,越近则越越不均匀,越近则越均

49、匀均匀。2022-11-26912.连续区域分布模式连续区域分布模式 连续性意味着空间现象的分布与地面有紧密关联,连续区域分布在地图上常以等值线表示,在地形研究中常用岭、谷和坳等来表述。目前,连续区域分布已经涉及所有类型的等值线,如“人口密度面”、“土地价值面”、“降雨量面”等。有些“面”并不是空间上连续的现象,但在空间分析时,可以用连续的等值线近似地模拟,以便从各种看起来杂乱的分布中循出一般规律。2022-11-2692(2)面状地物紧凑度(COMPACTNESS RATIO)该指标反映城市的紧凑程度,其中圆形区域被认为非紧凑也非膨胀型,紧凑度为1。其它形状的区域,其离散程度越大则紧凑度越低

50、。紧凑度有三个不同的计算公式。紧凑度有三个不同的计算公式。公式公式1 1:紧凑度紧凑度=其中,其中,A为面积,为面积,P为周长。为周长。(2)面状地物紧凑度(COMPACTNESS RATIO)公式公式2 2:紧凑度指数紧凑度指数=A/AA/A其中,其中,A A为区域面积,为区域面积,AA为该区域最小外接为该区域最小外接圆面积。在计算中采用最小外接圆面积作为衡量城圆面积。在计算中采用最小外接圆面积作为衡量城市形状的标准。市形状的标准。(2)面状地物紧凑度(COMPACTNESS RATIO)公式公式3 3:紧凑度紧凑度=1.273=1.273A/A/L2 2其中,其中,L L为最长轴长度,为最

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(空间量测与计算解析课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|