大学精品课件:chapter 3(Heat Transfer.J.P.Holman ).ppt

上传人(卖家):金钥匙文档 文档编号:430380 上传时间:2020-04-03 格式:PPT 页数:25 大小:1.42MB
下载 相关 举报
大学精品课件:chapter 3(Heat Transfer.J.P.Holman ).ppt_第1页
第1页 / 共25页
大学精品课件:chapter 3(Heat Transfer.J.P.Holman ).ppt_第2页
第2页 / 共25页
大学精品课件:chapter 3(Heat Transfer.J.P.Holman ).ppt_第3页
第3页 / 共25页
大学精品课件:chapter 3(Heat Transfer.J.P.Holman ).ppt_第4页
第4页 / 共25页
大学精品课件:chapter 3(Heat Transfer.J.P.Holman ).ppt_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、Chapter 3,College of Nuclear Science and Technology,Steady-State Conduction Multiple Dimensions,1,Two dimensions(common),Three dimensions,Chapter 3,College of Nuclear Science and Technology,2,Introduction,For two-dimensional steady state,the Laplace equation applies.,It becomes harder to solve the t

2、wo-dimensional steady state equations than one-dimensional ones.,How to get the solution?,Chapter 3,College of Nuclear Science and Technology,3,Solution methods,Analytical method,Numerical method,Graphical analysis,Analog method,Chapter 3,College of Nuclear Science and Technology,4,Summary,Solution

3、principle of conduction,One Dimension?,No,Shape factor method?,No,Analytical method?,Complex,Numerical techniques,Chapter 3,College of Nuclear Science and Technology,Thank you!,5,Chapter 3,College of Nuclear Science and Technology,Analytical method,6,solving the equation directly by mathematical too

4、ls,such as Fouries series.,Limits,Adapt to easy conditions only,Example1,Definition,One important method is the method of separation of variables,Back up,Chapter 3,College of Nuclear Science and Technology,7,Graphical analysis,Definition,Using the graph of temperature and heat flow distribution to g

5、et the solution-sketching the curvilinear squares.,Example2,Chapter 3,College of Nuclear Science and Technology,8,The conduction shape factor,Definition,In a two-dimensional system where only two temperature limits are limits are involved.Define a conduction shape factor S,Table 3-1,Back up,Chapter

6、3,College of Nuclear Science and Technology,9,Numerical method,Definition,Use the set of finite and discrete points to replace the physical field where time and space are continuous.Then solve the equation including these discrete points to get the unknown physical parameters.,One important method i

7、s finite-difference techniques,Chapter 3,College of Nuclear Science and Technology,10,Finite-difference techniques,Finite differences are used to approximate differential increments in the temperature and space coordinates. The smaller we choose these finite increments,the more closely the true temp

8、erature distribution will be approximated.,Chapter 3,College of Nuclear Science and Technology,11,Finite-difference techniques,Consider a two-dimensional body which is to be divided into equal increments in both x and y directions,as shown in Fig 3-5.,Chapter 3,College of Nuclear Science and Technol

9、ogy,12,Finite-difference techniques,Chapter 3,College of Nuclear Science and Technology,13,Finite-difference techniques,For the body with heat generation,For a square grid in which x= y,Then,Chapter 3,College of Nuclear Science and Technology,14,Finite-difference techniques,For convection boundary c

10、ondition,the result is,Chapter 3,College of Nuclear Science and Technology,15,Finite-difference techniques,Solution techniques,Matrix method(using matrix and software to get solution; may be complex),Gauss-Seidel iteration,Chapter 3,College of Nuclear Science and Technology,16,Gauss-Seidel iteration

11、,When the number of nodes is very large,an iterative techniques may frequently yield a more efficient solution to the nodal equation than a direct matrix.,From the front page,we know,Chapter 3,College of Nuclear Science and Technology,17,Gauss-Seidel iteration,Procedure,Chapter 3,College of Nuclear

12、Science and Technology,18,Gauss-Seidel iteration,Obviously, the smaller the value of ,the greater calculation time required to obtain the desired result and the accurate the result will be.,Back up,Chapter 3,College of Nuclear Science and Technology,Analog method,19,Steady-state conduction in a homo

13、geneous material of constant resistivity is analogous to steady heat conduction in a body of similar geometric shape. So we can simulate temperature fields by electrical fields.,Definition,Back up,They both satisfy the Laplace equation.,Chapter 3,College of Nuclear Science and Technology,20,Example1

14、,Considering that the two space coordinates x and y are independent ,use Fourier equations.,Chapter 3,College of Nuclear Science and Technology,21,So the total heat flow is the resultant of qx and qy.,Example1,If the temperature distribution in the matarial is known,we may easily establish the heat flow.,Back up,Chapter 3,College of Nuclear Science and Technology,22,Example2,Chapter 3,College of Nuclear Science and Technology,23,Example2,Chapter 3,College of Nuclear Science and Technology,24,Example2,Back up,Chapter 3,College of Nuclear Science and Technology,25,Back up,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(大学精品课件:chapter 3(Heat Transfer.J.P.Holman ).ppt)为本站会员(金钥匙文档)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|