大学精品课件:高等数学第二章高阶导数.ppt

上传人(卖家):金钥匙文档 文档编号:431070 上传时间:2020-04-04 格式:PPT 页数:19 大小:680KB
下载 相关 举报
大学精品课件:高等数学第二章高阶导数.ppt_第1页
第1页 / 共19页
大学精品课件:高等数学第二章高阶导数.ppt_第2页
第2页 / 共19页
大学精品课件:高等数学第二章高阶导数.ppt_第3页
第3页 / 共19页
大学精品课件:高等数学第二章高阶导数.ppt_第4页
第4页 / 共19页
大学精品课件:高等数学第二章高阶导数.ppt_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、,二、高阶导数的运算法则,第三节,一、高阶导数的概念,机动 目录 上页 下页 返回 结束,高阶导数,第二章,一、高阶导数的概念,速度,即,加速度,即,引例:变速直线运动,机动 目录 上页 下页 返回 结束,定义.,若函数,的导数,可导,或,即,或,类似地 , 二阶导数的导数称为三阶导数 ,阶导数的导数称为 n 阶导数 ,或,的二阶导数 ,记作,的导数为,依次类推 ,分别记作,则称,机动 目录 上页 下页 返回 结束,设,求,解:,依次类推 ,例1.,思考: 设,问,可得,机动 目录 上页 下页 返回 结束,例2. 设,求,解:,特别有:,解:,规定 0 ! = 1,思考:,例3. 设,求,机动

2、 目录 上页 下页 返回 结束,例4. 设,求,解:,一般地 ,类似可证:,机动 目录 上页 下页 返回 结束,例5 . 设,解:,机动 目录 上页 下页 返回 结束,例6. 设,求使,存在的最高,分析:,但是,不存在 .,2,又,阶数,机动 目录 上页 下页 返回 结束,二、高阶导数的运算法则,都有 n 阶导数 , 则,(C为常数),莱布尼兹(Leibniz) 公式,推导 目录 上页 下页 返回 结束,用数学归纳法可证莱布尼兹公式成立 .,机动 目录 上页 下页 返回 结束,例7.,求,解: 设,则,代入莱布尼兹公式 , 得,机动 目录 上页 下页 返回 结束,例8. 设,求,解:,即,用莱

3、布尼兹公式求 n 阶导数,令,得,由,得,即,由,得,机动 目录 上页 下页 返回 结束,内容小结,(1) 逐阶求导法,(2) 利用归纳法,(3) 间接法, 利用已知的高阶导数公式,(4) 利用莱布尼兹公式,高阶导数的求法,如,机动 目录 上页 下页 返回 结束,思考与练习,1. 如何求下列函数的 n 阶导数?,解:,解:,机动 目录 上页 下页 返回 结束,(3),提示: 令,原式,原式,机动 目录 上页 下页 返回 结束,解:,机动 目录 上页 下页 返回 结束,2. (填空题) (1) 设,则,提示:,各项均含因子 ( x 2 ),(2) 已知,任意阶可导, 且,时,提示:,则当,机动 目录 上页 下页 返回 结束,3. 试从,导出,解:,同样可求,(见 P101 题4 ),作业 P101 1 (9) , (12) ; 3 ; 4 (2) ; 8 (2) , (3) ; 9 (2) , (3),第四节 目录 上页 下页 返回 结束,解:,设,求,其中 f 二阶可导.,备用题,机动 目录 上页 下页 返回 结束,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(大学精品课件:高等数学第二章高阶导数.ppt)为本站会员(金钥匙文档)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|