(人教版适用)初二数学上册《最短路径问题》课件.ppt

上传人(卖家):晟晟文业 文档编号:4320172 上传时间:2022-11-29 格式:PPT 页数:23 大小:1,002KB
下载 相关 举报
(人教版适用)初二数学上册《最短路径问题》课件.ppt_第1页
第1页 / 共23页
(人教版适用)初二数学上册《最短路径问题》课件.ppt_第2页
第2页 / 共23页
(人教版适用)初二数学上册《最短路径问题》课件.ppt_第3页
第3页 / 共23页
(人教版适用)初二数学上册《最短路径问题》课件.ppt_第4页
第4页 / 共23页
(人教版适用)初二数学上册《最短路径问题》课件.ppt_第5页
第5页 / 共23页
点击查看更多>>
资源描述

1、13.4 课题学习 最短路径问题 第十三章 轴对称导入新课讲授新课当堂练习课堂小结学习目标1.导入新课导入新课复习引入1.如图,连接A、B两点的所有连线中,哪条最短?为什么?AB最短,因为两点之间,线段最短2.如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?为什么?PlABCDPC最短,因为垂线段最短3.在我们前面的学习中,还有哪些涉及比较线段大小的基本事实?三角形三边关系:两边之和大于第三边;斜边大于直角边.4.如图,如何做点A关于直线l的对称点?AlA 讲授新课讲授新课最短路径问题 “两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短

2、”等的问题,我们称之为最短路径问题.现实生活中经常涉及到选择最短路径问题,本节将利用数学知识探究数学史的著名的“牧马人饮马问题”及“造桥选址问题”.ABPlABCD牧马人饮马问题如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?C抽象成ABl数学问题作图问题:在直线l上求作一点C,使AC+BC最短问题.实际问题ABl问题1 现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?AlBC根据是“两点之间,线段最短”,可知这个交点即为所求.连接AB,与直线l相交于一点C.问题2 如果点A,B

3、分别是直线l同侧的两个点,又应该如何解决?想一想:对于问题2,如何将点B“移”到l 的另一侧B处,满足直线l 上的任意一点C,都保持CB 与CB的长度相等?ABl利用轴对称,作出点B关于直线l的对称点B.方法揭晓作法:(1)作点B 关于直线l 的对称点B;(2)连接AB,与直线l 相交于点C 则点C 即为所求 ABlB C问题3你能用所学的知识证明AC+BC最短吗?证明:如图,在直线l 上任取一点C(与点C 不重合),连接AC,BC,BC由轴对称的性质知,BC=BC,BC=BC AC+BC =AC+BC=AB,AC+BC=AC+BC在ABC中,ABAC+BC,AC+BCAC+BC即AC+BC

4、最短ABlB CC 造桥选址问题如图,A和B B两地在一条河的两岸,现要在河上造一座桥MN。桥造在何处可使从A到B的路径AMNB最短(假定河的两岸是平行的直线,桥要与河垂直)?BAABNM 1.如图假定任选位置造桥MN,连接AM和BN,从A到B的路径是AM+MN+BN,那么怎样确定什么情况下最短呢?BA2.利用线段公理解决问题我们遇到了什么障碍呢?思维分析我们能否在不改变AM+MN+BN的前提下把桥转化到一侧呢?什么图形变换能帮助我们呢?思维火花各抒己见1.把A平移到岸边.2.把B平移到岸边.3.把桥平移到和A相连.4.把桥平移到和B相连.BA1.把A平移到岸边.BA()AM+MN+BN长度改

5、变了2.把B平移到岸边.BA()AM+MN+BN长度改变了怎样调整呢?把A或B分别向下或上平移一个桥长那么怎样确定桥的位置呢?BA问题解决BAA1MN如图,平移A到A1,使AA1等于河宽,连接A1B交河岸于N作桥MN,此时路径AM+MN+BN最短.理由:另任作桥M1N,连接,连接AM,BN,AN.由平移性质可知,AMAN,AAMNMN,AMAN.AM+MN+BN转化为,而转化为.在ANB中,由线段公理知A1N1+BN1A1B.因此 AM+MN+BN.ABMNECD证明:由平移的性质,得 BNEM 且且BN=EM,MN=CD,BDCE,BD=CE,所以A,B两地的距离:AM+MN+BN=AM+M

6、N+EM=AE+MN,若桥的位置建在CD处,连接AC,CD,DB,CE,则AB两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在ACE中,AC+CEAE,AC+CE+MNAE+MN,即AC+CD+DB AM+MN+BN,所以桥的位置建在MN处,AB两地的路程最短.方法归纳解决最短路径问题的方法 1.在解决最短路径问题时,我们通常利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径的选择.2.当涉及含有固定线段“桥”的方法是构造平行四边形,从而将问题转化为平行四边形的问题解答.当堂练习当堂练习1.如图,直线l是一条河,P、Q是是两个村庄.欲在l上的某处修建一

7、个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需要管道最短的是()PQlAMPQlBMPQlCMPQlDMD2.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离是 米.ACBD河10003.如图,荆州古城河在CC处直角转弯,河宽相同,从A处到B处,须经两座桥:DD,EE(桥宽不计),设护城河以及两座桥都是东西、南北方向的,怎样架桥可使ADD E EB的路程最短?ADD CCEEB解:作AFCD,且AF=河宽,作BG CE,且BG=河宽,连接GF,与河岸相交于E,D.作DD,EE即为桥.理由:由作图法可知,AF/DD,AF=DD,则四边形AFDD为平行四边形,于是AD=FD,同理,BE=GE,由两点之间线段最短可知,GF最小.AD CCEEBFGD 课堂小结课堂小结原理线段公理和垂线段最短牧马人饮马 问 题解题方法造桥选址问题关键是将固定线段“桥”平移,构造平行四边形,将问题转化为平行四形的问题最短路径问题轴对称知识+线段公理解题方法

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 人教版(2024) > 八年级上册
版权提示 | 免责声明

1,本文((人教版适用)初二数学上册《最短路径问题》课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|