利用二次函数求方程的近似根课件.pptx

上传人(卖家):晟晟文业 文档编号:4379418 上传时间:2022-12-04 格式:PPTX 页数:24 大小:294.32KB
下载 相关 举报
利用二次函数求方程的近似根课件.pptx_第1页
第1页 / 共24页
利用二次函数求方程的近似根课件.pptx_第2页
第2页 / 共24页
利用二次函数求方程的近似根课件.pptx_第3页
第3页 / 共24页
利用二次函数求方程的近似根课件.pptx_第4页
第4页 / 共24页
利用二次函数求方程的近似根课件.pptx_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、2.5 二次函数与一元二次方程第2课时 利用二次函数求方程的近似根第二章 二次函数1.会用二次函数图象求一元二次方程的近似解及一元二次不等式的解集;(重点)2.通过研究二次函数与一元二次方程的联系体会数形结合思想的应用.(难点)学习目标问题:上节课我们学习了一元二次方程ax2+bx+c=0(a0)和二次函数y=ax2+bx+c(a0)之间的关系,那么如何利用二次函数图象直接求出一元二次方程的根呢?导入新课导入新课回顾与思考例1:求一元二次方程 的近似根(精确到0.1).0122 xx 分析:一元二次方程 x-2x-1=0 的根就是抛物线 y=x-2x-1 与x轴的交点的横坐标,因此我们可以先画

2、出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.讲授新课讲授新课利用图象法求一元二次方程的近似根解:画出函数 y=x-2x-1 的图象(如下图),由图象可知,方程有两个实数根,一个在-1与0之间,另一个在2与3之间.先求位于-1到0之间的根,由图象可估计这个根是-0.4或-0.5,利用计算器进行探索,见下表:x-0.4-0.5y-0.040.25观察上表可以发现,当x分别取-0.4和-0.5时,对应的y由负变正,可见在-0.5与-0.4之间肯定有一个x使y=0,即有y=x2-2x-1的一个根,题目只要求精确到0.1,这时取x=-0.4或x=-0.5都符合

3、要求.但当x=-0.4时更为接近0.故x1-0.4.同理可得另一近似值为x22.4.(1)用描点法作二次函数 y=ax2+bx+c的图象;(2)观察估计二次函数 的图象与x轴的交点的横坐标;(可将单位长度十等分,借助计算器确定其近似值);(3)确定方程ax2+bx+c=0的近似根;利用图象法求一元二次方程的近似根方法归纳1.已知二次函数yax2bxc的图象如图所示,则一元二次方程ax2bxc0的近似根为()Ax12.1,x20.1 Bx12.5,x20.5Cx12.9,x20.9 Dx13,x21解析:由图象可得二次函数yax2bxc图象的对称轴为x1,而对称轴右侧图象与x轴交点到原点的距离约

4、为0.5,x20.5;又对称轴为x1,则 1,x12(1)0.52.5.故x12.5,x20.5.故选B.221xx B针对训练 解答本题首先需要根据图象估计出一个根,再根据对称性计算出另一个根,估计值的精确程度,直接关系到计算的准确性,故估计尽量要准确方法总结例2:求一元二次方程 的近似根(精确到0.1).3122 xx 分析:令y=x-2x-1-3=x-2x-4,则x-2x-1=3的根就是抛物线 y=x-2x-4 与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标.2 解:y=x-2x-4的图象如图所示.解:由图象可知方程的一根在3到4之间,另一根在-

5、1到-2之间.(1)先求3到4之间的根.利用计算器进行探索:x3.23.3y-0.160.29因此,x=3.2是方程的一个近似根.(2)可类似地求出另一个根为x=-1.2.例2变式:你还能利用y=x-2x-1 的图象求一元二次方程 的近似根吗(精确到0.1)?3122 xx 分析:在y=x-2x-1的图象中作直线y=3,再用图象法求出直线与抛物线交点的横坐标,则横坐标的近似值即为所求方程的近似根.y=3 一元二次方程ax2+bx+c=m的根就是二次函数y=ax2+bx+c 与直线y=m(m是实数)图象交点的横坐标.既可以用求根公式求二次方程的根,也可以通过画二次函数图象来估计一元二次方程的根.

6、方法归纳问题1 函数y=ax2+bx+c的图象如图,那么方程ax2+bx+c=0的根是 _ _;不等式ax2+bx+c0的解集 是_;不等式ax2+bx+c0的解集 是_.3-1Oxyx1=-1,x2=3x3-1x2的解集是_;不等式ax2+bx+c2的解集是_.3-1Ox2(4,2)(-2,2)x1=-2,x2=4x4-2x0(a0)的解集是x2 的一切实数,那么函数y=ax2+bx+c的图象与 x轴有_ 个交点,坐标是_.方程ax2+bx+c=0的根是_.1(2,0)x=2问题3 如果方程ax2+bx+c=0(a0)没有实数根,那么 函数y=ax2+bx+c的图象与 x轴有_个交点;不等式

7、ax2+bx+c0时,ax2+bx+c0无解;(2)当a0时,ax2+bx+c0;-x2+x+20;x2-4x+40;-x2+x-20.xy020 xy-12xy0 y=x1=-1,x2=2-1 x2x1-1,x22y=x2-4x+4 x=2 x2的一切实数 x无解y=-x2+x-2 x无解 x无解 x为全体实数二次函数y=ax2+bx+c的图象与x轴交点a0a0 有两个交点x1,x2(x1x2)有一个交点x0没有交点二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次不等式的关系y0,x1xx2.y0,x2x或xx1 y0,x1xx2.y0,x2x或xx1y0,x0之外的所有实数;y0,无解y0,x0之外的所有实数;y0,无解y0,所有实数;y0,无解y0,所有实数;y0,无解要点归纳 判断方程 ax2+bx+c=0(a0,a,b,c为常数)一个解x的范围是()A.3 x 3.23 B.3.23 x 3.24 C.3.24 x 3.25 D.3.25 x0?(3)x取什么值时,y0?862xxy0862xxxyO248解:(:(1)x1=2,x2=4;(2)x4;(3)2x4.课堂小结课堂小结二次函数图象由图象与x轴的交点位置,判断方程根的近似值一元二次方程的根一元二次不等式的解集

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(利用二次函数求方程的近似根课件.pptx)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|