1、牛顿第二定律的应用牛顿第二定律的应用(正交分解法)(正交分解法)若研究对象在不共线的若研究对象在不共线的两个力作用下做加速运动两个力作用下做加速运动,一一般用平行四边形定则般用平行四边形定则(或三角形定则)解题;若研究(或三角形定则)解题;若研究对象在不共线的对象在不共线的三个以上的力作用下做加速运动三个以上的力作用下做加速运动,一一般用正交分解法般用正交分解法解题(注意灵活选取坐标轴的方向,解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度既可以分解力,也可以分解加速度)。)。两个正交方向,即坐标轴两个正交方向,即坐标轴 的方向,原则上是可以任意选取的,的方向,原则上是可以任意选
2、取的,但如果选取适当,就可以使需要分解的力达到最小个数,在列方程但如果选取适当,就可以使需要分解的力达到最小个数,在列方程和计算时就显得简便。因此,在动力学的正交分解中,常取正交方和计算时就显得简便。因此,在动力学的正交分解中,常取正交方向的一个方向(如向的一个方向(如x方向)与加速度方向)与加速度a的方向一致,则正交方向中的的方向一致,则正交方向中的另一个方向(如另一个方向(如y方向)上就没有加速度,故所列分量方程:方向)上就没有加速度,故所列分量方程:由于加速度由于加速度 也是矢量,有些情况是在将外力作正交分解的也是矢量,有些情况是在将外力作正交分解的同时,也需要将同时,也需要将 作正交分
3、解,这时的分量方程为:作正交分解,这时的分量方程为:xy、FmaFxy0aaFmaFmaxxyy分解力不分解加速度分解力不分解加速度质量为质量为m的物体,放在倾角为的物体,放在倾角为的斜面上,物体与斜面的的斜面上,物体与斜面的动摩擦因数动摩擦因数,如果沿水平方向加一力,如果沿水平方向加一力F,使物体沿斜面向,使物体沿斜面向上以上以a匀加速运动,求匀加速运动,求F?Fasincos)gcossin(0FsinmgcosN:ysincos:gamFNfmafmgFx不分解力分解加速度不分解力分解加速度自动电梯与地面的夹角为自动电梯与地面的夹角为30,当电梯沿这个方向向上,当电梯沿这个方向向上作匀加
4、速直线运动时,放在电梯平台上的箱子对平台的压作匀加速直线运动时,放在电梯平台上的箱子对平台的压力是其重力的力是其重力的1.2倍。如图所示。则箱子与地板面的静摩倍。如图所示。则箱子与地板面的静摩擦力是其所受重力大小的擦力是其所受重力大小的。axay5330sin:30cos:30sin30cos0000mgfmamgNymafxaaaayx正交分解与临界态正交分解与临界态在倾角为在倾角为 的光滑斜面体上,放有质量为的光滑斜面体上,放有质量为m的小球,小球的小球,小球用一根平行斜面的细线系在斜面上端。如右图所示。当斜用一根平行斜面的细线系在斜面上端。如右图所示。当斜面体向右作加速度为面体向右作加速
5、度为a的匀加速直线运动时,求线对小球的的匀加速直线运动时,求线对小球的拉力和斜面对小球的弹力。拉力和斜面对小球的弹力。解析:如右图所示,小球受三个解析:如右图所示,小球受三个力:重力力:重力mg、弹力、弹力N、拉力、拉力T。因为小球具有水平向右的加速度因为小球具有水平向右的加速度a,所以取水平方向和竖直方向,所以取水平方向和竖直方向建立坐标,并将建立坐标,并将N和和T做正交分做正交分解,根据牛顿第二定律列出分量解,根据牛顿第二定律列出分量方程:方程:在倾角为在倾角为 的光滑斜面体上,放有质量为的光滑斜面体上,放有质量为m的小球,小球的小球,小球用一根平行斜面的细线系在斜面上端。如右图所示。当斜
6、用一根平行斜面的细线系在斜面上端。如右图所示。当斜面体向右作加速度为面体向右作加速度为a的匀加速直线运动时,求线对小球的的匀加速直线运动时,求线对小球的拉力和斜面对小球的弹力。拉力和斜面对小球的弹力。正交分解与临界态正交分解与临界态TNmaTNmgcossinsincos0TmgaNmga;。(sincos)(cossin)可以看出:当加速度可以看出:当加速度a越大时,线上拉力越大时,线上拉力T越大,弹力越大,弹力N越小;当加速度越小;当加速度agctgN时,。0正交分解与临界态正交分解与临界态在水平轨道上的车厢里,有一倾角为在水平轨道上的车厢里,有一倾角为的斜面,斜面上有的斜面,斜面上有一质
7、量为一质量为m的物块,与斜面的动摩擦因数的物块,与斜面的动摩擦因数,要使物体与斜,要使物体与斜面保持静止,车厢应以多大加速度在水平面上向左匀加速面保持静止,车厢应以多大加速度在水平面上向左匀加速运动?运动?aNmamgtantan0gamgmaf 时,正交分解与临界态正交分解与临界态在水平轨道上的车厢里,有一倾角为在水平轨道上的车厢里,有一倾角为的斜面,斜面上有的斜面,斜面上有一质量为一质量为m的物块,与斜面的动摩擦因数的物块,与斜面的动摩擦因数,要使物体与斜,要使物体与斜面保持静止,车厢应以多大加速度在水平面上向左匀加速面保持静止,车厢应以多大加速度在水平面上向左匀加速运动?运动?agaNf
8、mgfmafsincoscossin0sincosNcossinNfgtana11111111沿斜面向下时,当 正交分解与临界态正交分解与临界态在水平轨道上的车厢里,有一倾角为在水平轨道上的车厢里,有一倾角为的斜面,斜面上有的斜面,斜面上有一质量为一质量为m的物块,与斜面的动摩擦因数的物块,与斜面的动摩擦因数,要使物体与斜,要使物体与斜面保持静止,车厢应以多大加速度在水平面上向左匀加速面保持静止,车厢应以多大加速度在水平面上向左匀加速运动?运动?agaNfmgfmafsincoscossin0sincosNcos2sinNfgtana2222222沿斜面向上时,当 正交分解与临界态正交分解与临
9、界态在水平轨道上的车厢里,有一倾角为在水平轨道上的车厢里,有一倾角为的斜面,斜面上有的斜面,斜面上有一质量为一质量为m的物块,与斜面的动摩擦因数的物块,与斜面的动摩擦因数,要使物体与斜,要使物体与斜面保持静止,车厢应以多大加速度在水平面上向左匀加速面保持静止,车厢应以多大加速度在水平面上向左匀加速运动?运动?agagsincoscossinsincoscossin小车在水平面上向左作直线运动,车厢内用OA、OB两细线系住小球。球的质量m=4千克。线OA与竖直方向成=37角。如图所示。g取10米/秒2,求:(1)小车以5米/秒的速度作匀速直线运动,求OA、OB两绳的张力?(2)当小车改作匀减速直
10、线运动,并在12.5米距离内速度降为零的过程中,OA、OB两绳张力各多大?(3)小车如何运动时,可使OB绳所受拉力开始为零?T N T N T N T N aO AO BO AO B5 0 3 0 5 0 3 47 502、;、;向 左,米 秒./TN TN TN TN aO AO BO AO B 5 0 3 0 5 0 3 47 502、;、;向 左,米 秒./TN TN TN TN aO AO BO AO B 5 0 3 0 5 0 3 47 502、;、;向左,米 秒./两重叠放在一起的滑块,置于固定的,倾角为的斜面两重叠放在一起的滑块,置于固定的,倾角为的斜面上,如图上,如图9所示,滑
11、块所示,滑块A、B的质量分别为的质量分别为M,m。A与斜与斜面间的滑动摩擦系数为,面间的滑动摩擦系数为,B与与A之间滑动摩擦系数为,两之间滑动摩擦系数为,两滑块都从静止开始以相同的加速度从斜面滑下,滑块滑块都从静止开始以相同的加速度从斜面滑下,滑块B受到的摩擦力为:受到的摩擦力为:以以A、B两个物体整体为分析对像,受两个物体整体为分析对像,受力情况如图力情况如图14所示,如图建立直角坐标所示,如图建立直角坐标系系xoy,则有,则有 FmM gfmM axsin1 FNmM gycos02 fN13解(1)(2)(3)得 amM gmM gmMggsincossincos11两重叠放在一起的滑块,置于固定的,倾角为的斜面两重叠放在一起的滑块,置于固定的,倾角为的斜面上,如图上,如图9所示,滑块所示,滑块A、B的质量分别为的质量分别为M,m。A与斜与斜面间的滑动摩擦系数为,面间的滑动摩擦系数为,B与与A之间滑动摩擦系数为,两之间滑动摩擦系数为,两滑块都从静止开始以相同的加速度从斜面滑下,滑块滑块都从静止开始以相同的加速度从斜面滑下,滑块B受到的摩擦力为:受到的摩擦力为:以物体以物体B为分析对象,受力情况如为分析对象,受力情况如图图15所示,同理可得所示,同理可得 FmgfmaxAsinFNmgyAcos0cos1mgcossinsinsin1ggmmgmamgfA